

1.1.1 CURRICULUM PLANNING AND IMPLEMENTATION

S.No	Contents	Page No
	INSTITUTE LEVEL	
1.	Academic Calendar	1
2.	Overall Timetable Preparation - Guidelines	6
	DEPARTMENT LEVEL	
3.	Subject Allocation Circular, Staff willingness, Competency Matrix	7
4.	Staff Workload	15
5.	Subject allocation classwise	17
	COURSE INCHARGE LEVEL	
6.	Syllabus	18
7.	Courseplan	20
8.	Student Namelist	27
9.	Individual Timetable	29
10.	Unitwise Notes (Sample PPT)	30
11.	Question Bank	33
12.	Log Book	56
13.	Internal Assessment Question paper, Mark Statement, Sample paper	74
14.	Format A – Assignment	96
15.	Proofs for teaching Aids / Methodology	105
	Identified PCE Skills and execution proofs	
16.	Format B – Content Beyond Syllabus	109
17.	Advanced and Slow Learner List	112
18.	Revision Class Schedule, Mark Statement, Sample Paper	113
19.	Test Report	121
20.	University Question Paper	122
21.	Review Sheet	125

Academic Calendar Academic Year 2021-2022 (Odd Semester)

AUGUST 2021

DATE	DAY	Events
02.08.21	Monday	
03.08.21	Tuesday	
04.08.21	Wednesday	Staff Council Meeting
05.08.21	Thursday	
06.08.21	Friday	
07.08.21	Saturday	Holiday
09.08.21	Monday	
10.08.21	Tuesday	Submission of DRM Minutes by HODs to IQAC Coordinator
11.08.21	Wednesday	
12.08.21	Thursday	
13.08.21	Friday	
14.08.21	Saturday	
16.08.21	Monday	Submission of DRC Meeting Minutes by DRC Convener to Principal
17.08.21	Tuesday	
18.08.21	Wednesday	- Commencement of Classes for II, III, IV Year UG - IQAC Meeting
19.08.21	Thursday	
20.08.21	Friday	Muharram - Holiday
21.08.21	Saturday	Submission of IQAC Meeting Minutes by IQAC Coordinator to Principal
23.08.21	Monday	Submission of Status of Study Material(Soft Copy) to Principal by HODs
24.08.21	Tuesday	
25.08.21	Wednesday	
26.08.21	Thursday	Class Committee Meeting I for II, III & IV Year
27.08.21	Friday	Class Committee Meeting I for II, III & IV Year
28.08.21	Saturday	Working day
30.08.21	Monday	Krishna Jayanthi - Holiday
31.08.21	Tuesday	 Submission of CCM- I Minutes & Action taken report to Principal by HODs Submission of stock verification report

NO. OF WORKING DAYS : 10

Academic Calendar Academic Year 2021-2022 (Odd Semester)

SEPTEMBER 2021

DATE	DAY	Events
01.09.21	Wednesday	Staff Council Meeting
02.09.21	Thursday	
03.09.21	Friday	
04.09.21	Saturday	Holiday
06.09.21	Monday	
07.09.21	Tuesday	
08.09.21	Wednesday	
09.09.21	Thursday	Submission of DRM Minutes by HODs to IQAC Coordinator
10.09.21	Friday	Vinayagar Chaturthi – Holiday
11.09.21	Saturday	Working day
13.09.21	Monday	
14.09.21	Tuesday	
15.09.21	Wednesday	 Submission of DRC Meeting Minutes by DRC Convener to Principal IQAC Meeting
16.09.21	Thursday	 Submission of Assignment I Status to Principal by HODs Submission of Continuous Assessment Test I Question Papers to CCE office
17.09.21	Friday	Staff Appraisal Feed Back Collection
18.09.21	Saturday	 Submission of IQAC Meeting Minutes by IQAC Coordinator to Principal Submission of Syllabus Completion Report by HODs
20.09.21	Monday	Continuous Assessment Test I Commences for UG II, III, IV Year
21.09.21	Tuesday	
22.09.21	Wednesday	
23.09.21	Thursday	
24.09.21	Friday	
25.09.21	Saturday	- Working day - Continuous Assessment Test I Ends for UG II, III, IV Year
27.09.21	Monday	Class Committee Meeting II for II, III & IV Year
28.09.21	Tuesday	Class Committee Meeting II for II, III & IV Year
29.09.21	Wednesday	Submission of Continuous Assessment Test I Result Analysis by HODs
30.09.21	Thursday	- Submission of CCM- II Minutes & Action taken report to Principal by HODs - Counseling I for II, III & IV Year

NO. OF WORKING DAYS : 24

Academic Calendar Academic Year 2021-2022 (Odd Semester)

OCTOBER 2021

DATE	DAY	Events
01.10.21	Friday	Review Meeting with Principal
02.10.21	Saturday	Gandhi Jayanthi - Holiday
04.10.21	Monday	
05.10.21	Tuesday	Submission of Counseling I Report by Coordinator to IQAC Coordinator
06.10.21	Wednesday	Staff Council Meeting
07.10.21	Thursday	
08.10.21	Friday	
09.10.21	Saturday	Working day
11.10.21	Monday	Submission of DRM Minutes by HODs to IQAC Coordinator
12.10.21	Tuesday	
13.10.21	Wednesday	 Submission of Continuous Assessment Test II Question Papers to CCE office Submission of Assignment II (PCE Activity) Status to Principal by HODs Submission of Syllabus Completion Report by HODs
14.10.21	Thursday	Ayudha Pooja - Holiday
15.10.21	Friday	Vijaya Dasami - Holiday
16.10.21	Saturday	
18.10.21	Monday	 Submission of DRC Meeting Minutes by DRC Convener to Principal Continuous Assessment Test II Commences for UG II, III, IV Year
19.10.21	Tuesday	Milad-un-Nabi - Holiday
20.10.21	Wednesday	IQAC Meeting
21.10.21	Thursday	
22.10.21	Friday	
23.10.21	Saturday	- Working day - Submission of IQAC Meeting Minutes by IQAC Coordinator to Principal
25.10.21	Monday	Continuous Assessment Test II Ends for UG II, III, IV Year
26.10.21	Tuesday	Class Committee Meeting III for II, III & IV Year
27.10.21	Wednesday	Class Committee Meeting III for II, III & IV Year
28.10.21	Thursday	Submission of Continuous Assessment Test II Result Analysis by HODs
29.10.21	Friday	Review Meeting with Principal
30.10.21	Saturday	Submission of CCM- III Minutes & Action taken report to Principal by HODs

NO. OF WORKING DAYS: 22

Academic Calendar Academic Year 2021-2022 (Odd Semester)

NOVEMBER 2021

DATE	DAY	Events
01.11.21	Monday	
02.11.21	Tuesday	
03.11.21	Wednesday	Staff Council Meeting
04.11.21	Thursday	Deepavali - Holiday
05.11.21	Friday	
06.11.21	Saturday	- Working day - Counseling II for II, III & IV Year
08.11.21	Monday	Zero th Project review for Final year UG
09.11.21	Tuesday	Submission of Counseling II Report by Coordinator to IQAC Coordinator
10.11.21	Wednesday	 Submission of DRM Minutes by HODs to IQAC Coordinator Submission of Syllabus Completion Report by HODs
11.11.21	Thursday	 - Revision classes (Phase I) Commences for II, III & IV Year - Submission of Model Exam Question Papers to CCE office
12.11.21	Friday	
13.11.21	Saturday	Revision classes (Phase I) Ends for II, III & IV Year
15.11.21	Monday	 Model Exam: Theory 1 for UG II, III, IV Year Submission of DRC Meeting Minutes by DRC Convener to Principal
16.11.21	Tuesday	Model Exam: Theory 2 for UG II, III, IV Year
17.11.21	Wednesday	- Model Exam: Theory 3 for UG II, III, IV Year - IQAC Meeting
18.11.21	Thursday	Model Exam: Theory 4 for UG II, III, IV Year
19.11.21	Friday	Model Exam: Theory 5 for UG II, III, IV Year
20.11.21	Saturday	 Working day Model Exam: Theory 6 for UG II, III, IV Year Submission of IQAC Meeting Minutes by IQAC Coordinator to Principal
22.11.21	Monday	Model Practical Examinations
23.11.21	Tuesday	Model Practical Examinations
24.11.21	Wednesday	- Model Practical Examinations - Submission of Model Exam Result Analysis by HODs
25.11.21	Thursday	 Review Meeting with Principal Revision classes (Phase II) Commences for II, III & IV Year
26.11.21	Friday	
27.11.21	Saturday	
29.11.21	Monday	
30.11.21	Tuesday	 Last Working day Revision classes (Phase II) Ends for II, III & IV Year

NO. OF WORKING DAYS: 25

Academic Calendar Academic Year 2021-2022 (Odd Semester)

DECEMBER 2021

DATE	DAY	Events
01.12.21	Wednesday	Staff Council Meeting
02.12.21	Thursday	Commencement of Practical Examinations
03.12.21	Friday	
04.12.21	Saturday	Holiday
06.12.21	Monday	
07.12.21	Tuesday	
08.12.21	Wednesday	ISO Internal Audit Commences
09.12.21	Thursday	
10.12.21	Friday	Submission of DRM Minutes by HODs to IQAC Coordinator
11.12.21	Saturday	
13.12.21	Monday	Commencement of End Semester Examinations
14.12.21	Tuesday	
15.12.21	Wednesday	 Submission of DRC Meeting Minutes by DRC Convener to Principal IQAC Meeting
16.12.21	Thursday	ISO Internal Audit Ends
17.12.21	Friday	Submission of Subject Allocation Report for next semester
18.12.21	Saturday	Submission of IQAC Meeting Minutes by IQAC Coordinator to Principal
20.12.21	Monday	Submission of Report on Stock Verification, ISO Internal Audit by coordinators
21.12.21	Tuesday	
22.12.21	Wednesday	
23.12.21	Thursday	
24.12.21	Friday	
25.12.21	Saturday	Christmas - Holiday
27.12.21	Monday	
28.12.21	Tuesday	
29.12.21	Wednesday	
30.12.21	Thursday	
31.12.21	Friday	Last Date for submission of LM, QB for next semester

NO. OF WORKING DAYS: 25

J. 1000 118/2021.

CC: Secretary/ CEO VP/HODs/ AO DW-Hostels/Transport/Canteen/HS-GH

ACADEMIC YEAR 2021 - 22 ODD SEMESTER

GUIDELINES FOR TIMETABLE PREPARATION

- Due to Covid'19 classes will be conducted through online mode.
- College Timing is changed to 9.30 AM to 4.00 PM. (5 Periods / Day) (60 Min / Period)
- 15 minutes break will be given in between classes

1	2	3	4 0	01.00 pm	5	6
09.30am	10.45am 10.45am	12.00pm 01.00pm	11.55am 12.45pm	01.45 pm	01.45pm 02.45pm	03.00pm 04.00pm
	10.45am			Lunch		

- Lecture Hours
 - Maximum 5 to 6 periods allocated for tough Subjects (Credit 4 or Tutorial) and 3 to 4 periods allocated for remaining subjects (Credit 3).
 - Toughest subject is selected by concern HOD based on the results obtained in the previous year.
 - Tutorial Subjects / Elective Subjects must be mentioned in timetable itself
- Lab Hours
 - Hours will be allocated based on Tamilnadu Govt. & Anna University Guidelines
- Excess Hours
 - Excess Hours will be implemented in Saturdays
 - II Year Mini Project/ Refresher Course 1 or 2 periods / Week
 - III Year GATE Coaching & Value Added Course 1 or 2 periods / Week
 - Allocate 1 hr for NPTEL/Swayam for all year
- Training & Placement Hour
 - Allocate 2 Hrs / week to all department students.
 - o II year & III year
 - Soft Skill 1 period / Week
 - Aptitude 1 periods / Week
 - o IV Year
 - Soft skill 2 periods / Week
 - Aptitude 2 periods / Week
- PCE or Professional Society Activities will be conducted on saturday
- Timetable format is continued.
- x. Pur 4/8/21

OVERALL TIMETABLE COORDINATOR

0418/2021 PRINCIPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING ACADEMIC YEAR 2020- 2021 (EVEN SEMESTER)

CIRCULAR

DATE: 14.6.2021

Due to Covid 19 (Second wave), Subject allocation will be done in online mode. Staff members are requested to mention their willingness to opt Theory & Laboratory papers for the forthcoming academic year **2021-2022 Odd semester**. Google form shared through our department whatsapp group (CSE STAFF CORNER)

- Senior & experienced faculties shall prefer to opt Tough / Problematic paper thereby helping in securing good results.
- We will convene department meeting to finalize papers on 19.6.2021 through google meet. Google meet link will be shared in our Whatsapp group

Encl:

1. Link of Google form - https://forms.gle/5msWnLbGqqTBLrmcA

7

10.1

Subject Allocation 2021-22 Odd Semester

* Required

1. Email *

2. Staff Name:(Ex. Mr.Arun.M) *

3. Willing subject THEORY. (Kindly select any three THEORY subjects) *

Check all that apply.

CS8792 Cryptography and Network Security- IV YEAR

CS8791 Cloud Computing- IV YEAR

Open Elective II- IV YEAR

Professional Elective II- IV YEAR

Professional Elective III- IV YEAR

CS8591 Computer Networks- III YEAR

CS8501 Theory of Computation- III YEAR

CS8592 Object Oriented Analysis and Design- III YEAR

Open Elective I- III YEAR

CS8391 Data Structures- II YEAR

CS8392 Object Oriented Programming -II YEAR

GE8151 Problem Solving and Python Programming- I YEAR

Fundamentals of C and Data structures- II ECE

OOPS- III EEE

https://docs.google.com/forms/d/1aDrgw0Vpb98Q0GyX7v4pw3FMbCF9K8C5xy1ricj-DSg/edit?ts=61c97226

1/2

4. Willing subject LAB. (Kindly select any two LAB subjects) *

Check all that apply.

- CS8381 Data Structures Laboratory -II YEAR
- CS8383 Object Oriented Programming Laboratory -II YEAR
- CS8382 Digital Systems Laboratory -II YEAR
- CS8582 Object Oriented Analysis and Design Laboratory- III YEAR
- CS8581 Networks Laboratory III YEAR
- CS8711 Cloud Computing Laboratory -IV YEAR
- IT8761 Security Laboratory IV YEAR
- GE8161 Problem Solving and Python Programming Laboratory -I YEAR
- Fundamentals of C and Data structure Lab- II ECE
- 00PS lab- III EEE
- IV YEAR Project Work

5. Comment if any.

This content is neither created nor endorsed by Google.

1 318/10/4

https://docs.google.com/forms/d/1aDrgw0Vpb98Q0GyX7v4pw3FMbCF9K8C5xy1ricj-DSg/edit?ts=61c97226

2/2

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ACADEMIC YEAR 2020 - 2021 (EVEN SEMESTER)

WILLINGNESS CHART FOR SUBJECT ALLOCATION FOR ACADEMIC YEAR 2021 - 2022 (ODD SEMESTER)

STAFF NAME	SUB 1	SUB 2	SUB 3	LAB 1	LAB 2
Dr.S.M.Uma	CS8592 Object Oriented Analysis and Design- III YEAR	Open Elective II- IV YEAR	CS8591 Computer Networks- III YEAR	IV YEAR Project Work	
K.Abhirami	CS8391 Data Structures- II YEAR	Professional Elective III- IV YEAR	CS8791 Cloud Computing- IV YEAR	CS8381 Data Structures Laboratory -II YEAR	IV YEAR Project Work
S.Puvaneswari	CS8791 Cloud Computing- IV YEAR	CS8501 Theory of Computation- III YEAR	CS8391 Data Structures- II YEAR	CS8381 Data Structures Laboratory -II YEAR	CS8711 Cloud Computing Laboratory - IV YEAR
B.Sangeetha	Professional Elective	CS8791 Cloud Computing- IV YEAR	CS8592 Object Oriented Analysis and Design- III YEAR	CS8582 Object Oriented Analysis and Design Laboratory- III YEAR	CS8381 Data Structures Laboratory -II YEAR
S.Rajarajan	CS8792 Cryptography and Network Security- IV YEAR	Open Elective II- IV YEAR	CS8392 Object Oriented Programming -II YEAR	IT8761 Security Laboratory - IV YEAR	CS8381 Data Structures Laboratory -II YEAR
Dr.D.Sivakumar	CS8591 Computer Networks- III YEAR	CS8391 Data Structures- II YEAR	CS8392 Object Oriented Programming -II YEAR	CS8581 Networks Laboratory - III YEAR	CS8383 Object Oriented Programming Laboratory -II YEAR

STAFF NAME	SUB 1	SUB 2	SUB 3	LAB 1	LAB 2
R.Suganthalakshmi	Open Elective II- IV YEAR	Professional Elective III- IV YEAR	Open Elective I- III YEAR	CS8581 Networks Laboratory - III YEAR	CS8383 Object Oriented Programming Laboratory -II YEAR
R.Sriramkumar	CS8791 Cloud Computing- IV YEA	Open Elective I- III YEAR	CS8592 Object Oriented Analysis and Design- III YEAR	CS8582 Object Oriented Analysis and Design Laboratory- III YEAR	CS8711 Cloud Computing Laboratory -IV YEAR
G.Chandrapraba	CS8392 Object Oriented Programming -II YEAR	Open Elective II- IV YEAR	CS8501 Theory of Computation- III YEAR	CS8383 Object Oriented Programming Laboratory -II YEAR	CS8381 Data Structures Laboratory -II YEAR
M.Arun	CS8791 Cloud Computing- IV YEA	CS8392 Object Oriented Programming -II YEAR	OOPS- III EEE	CS8383 Object Oriented Programming Laboratory -II YEAR	OOPS lab- III EEE

(SUBJECT ALLOCATION INCHARGE)

HOD/CSE 21/6/21

11

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ACADEMIC YEAR 2021 - 2022 (ODD SEMESTER)

COMPETENCY MATRIX FOR SUBJECT ALLOCATION

SNO		STAFF NAME BJECT	S.M.UMA J.J.	K.ABHIRAMI	S.PUVANESWARK R	B.SANGEETHA	S.RAJARAJAN LAN	D.SIVAKUMAR	R.SUGANTHALAKSH	R.SRIRAMKUMAR	M.ARUN V71	G.CHANDRA PRABA
I YEA	R											
1.		Problem Solving & Python Programming		* *	**	**	*×		***	40KK	***	**
2.		Problem Solving & Python Programming Lab		**					***	right.	***	
II YEA	AR .											
3.	CS3391	Data Structures	**	**	**	**	* *				*	**
4.	CS8392	Object Oriented Programming				1		xopf			*	***
5.	CS8381	Data Structures Lab		***	林	*+	-p.7*					**
6.	CS8383	OOPs Lab						* dt			**	Kith

.

SNO		STAFF NAME SUBJECT	S.M.UMA 5 3	K.ABHIRAMI	S.PUVANESWARI	BSANGEETHA	S.RAJARAJAN	D.SIVAKUMAR	R.SUGANTRALAKSH	R.SRIRAMKUMAR DU	M.ARUN V	G.CHANDRA PRABA
III YE	EAR		s	×	S	ф.,	N N	0	8	æ	2	0
7.	CS8591	Computer Networks	**	K-t-	4×		2*	***				
8.	CS8501	Theory of Computation			***							
9.	CS8592	Object Oriented Analysis & Design	***	_		**						
10.	OMF551	Product Design & Development							* #**	æ	*	
11.	CS8582	Object Oriented Analysis & Design Laboratory								11		
12.	CS8581	Networks Laboratory				**		x**	***			**
IV YE	AR											
<mark>13</mark> .	CS8792	Cryptography & Network Security		**	**		**	***		**		
14.	CS8791	Cloud Computing	64		**	48				xx	**	
15.	IT8075	Software Project Management (Prof.Elective – II)	XX.		**	404				**		

SNO		STAFF NAME	S.M.UMA J	K.ABHIRAMI	S.PUVANESWARI	B.SANGEETHA	S.RAJARAJAN LA	D.SIVAKUMAR	R.SUGANTHALAK	R.SRIRAMKUMAR	M.ARUN YY	G.CHANDRA PRABA
16.	CS8088	Wireless Adhoc & Sensor Networks (PE –III)	K#		*	**		**			*	
17.	OME752	Supply Chain Management (Open Elective - II)							**			**
18.	CS8711	Cloud Computing Laboratory			***	**				KA		
19.	IT8761	Security Laboratory					养 华斌					
20.	EC8393	Fundamentals of Data structures in C (II ECE)		**	**			**			**	**
21.	EC8381	Fundamentals of Data structures in C Lab (II ECE)			* *	秋	1	1*				**
22.	CS8392	Object Oriented Programming (III EEE)						xx			**	K ≠
23.	CS8383	OOPs Lab (III EEE)				f#		∱-\$ŧ			**	ж¥
24.	OCS752	Introduction to C Programming (IV EEE)					**		**		**	

Willing to handle

Capable of Handling

**

*** Expertise

S. Pur 21/6/21 PREPARED BY (Mrs.S.Puvaneswari AP/CSE)

APPROVED BY (Dr.S.M.Uma HOD/ CSE)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING ACADEMIC YEAR 2021 – 2022 (ODD SEMESTER) STAFF WORKLOAD

SNO	STAFF NAME	THEORY / PRACTICAL WITH SUB.CODE	CLASS / BRANCH WITH CLASS STRENGTH		
1. Dr.S.M.Uma HOD/CSE		T1: CS8592 - Object Oriented Analysis & Design L1: UG Project Phase I	T1: III CSE (49) L1: IV CSE		
2.	Ms.K.Abhirami (HEAD IQAC)	T1: CS8391 – Data Structure L1: CS8381 – Data Structures Lab	T1: II CSE (63) L1: II CSE (63)		
3.	Ms.S.Puvaneswari	T1: CS8503 - Theory of Computation T1: IT8075 - Software Project Management L1: CS8711 - Cloud Computing Lab L2: GE8161 - Problem Solving & Python Programming Lab	T1: III CSE (45) T2: II ECE (47) L1: II ECE (47) L2: I Year		
4.	Ms.B.Sangeetha	T1: CS8088 - Wireless Adhoc & Sensor Networks T2: GE8161 - Problem Solving & Python Programming L1: EC8381- Fundamentals of Data structures in C Lab (M) L2: GE8161 - Problem Solving & Python Programming Lab	T1: IV CSE (44) T2: I Year L1: II ECE (42) L2: I Year		
Mr.S.Rajarajan 5. (Class Incharge – IV CSE)		5.	(Class Incharge -	T1 : CS8792 - Cryptography & Network Security T2: GE8151 - Problem Solving & Python Programming L1: IT8761 - Security Lab L2: GE8161 - Problem Solving & Python Programming Lab	T1: IV CSE (44) T2: I Year L1: IV CSE(44) L2: I Year
6.	Dr.D.Sivakumar	T1: EC8393 – Fundamentals of Data Structures in C T2: CS8591 - Computer Networks L1: CS8581 – Networks Lab L2: GE8161 – Problem Solving & Python Programming Lab	T1: II ECE(42) T2: III CSE(49) L1: II CSE (51) L2: I Year		
7.	Ms.R.Sugantha Lakshmi	T1: OME752 – Supply Chain Management T2: OCS752 – Introduction to C Programming L1: Communication Networks Lab L2: GE8161 – Problem Solving & Python Programming Lab	T1: IV CSE (44) T2: IV EEE L1: III ECE (45) L2: I Year		
8.	Mr.R.Sriramkumar (Class Incharge - III CSE)	T1: OMF551 – Product Design & Development T2: GE8151 – Problem Solving & Python Programming L1: CS8582 - Object Oriented Analysis & Design Laboratory L2: GE8161 – Problem Solving & Python Programming Lab	T1: III CSE (49) T2: I Year L1: III CSE (49) L2: I Year		
9.	Mr.M.Arun	T1: CS8791 - Cloud Computing T2: CS8392 - OOP L1: CS8393 - OOP Lab L2: GE8161 - Problem Solving & Python Programming Lab	T1: IV CSE (44) T2: III EEE L1: III EEE L2: I Year		

and the

- CARGE CONTRACT

C

SNO	STAFF NAME	THEORY / PRACTICAL WITH SUB.CODE	CLASS / BRANCH WITH CLASS STRENGTH	
10.	Ms.G.Chandra Praba (Class Incharge – II CSE)	T1: CS8392 – OOP T2: GE8151 – Problem Solving & Python Programming L1: CS8393 – OOP Lab L2: GE8161 – Problem Solving & Python Programming Lab	T1: II CSE (63) T2: I Year L1: II CSE(63) L2: I Year	
11. New staff (R. Randha) Programmin L1: GE8161 -		T1: GE8151 – Problem Solving & Python Programming L1: GE8161 – Problem Solving & Python Programming Lab	T1: I Year L1: I Year	

HOD/CSE 241714

C

22/2/2021. J. Box

PRINCIPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING ACADEMIC YEAR 2021 – 2022 (ODD SEMESTER) CLASSWISE SUBJECT ALLOCATION RECORD

II YEAR		STAFF NAME
SUB CODE	SUBJCT NAME	STATT TO ME
MA8351	Discrete Mathematics	Dr.R.Suresh
CS8351	Digital Principles and System Design	Mr.W.Newton David Raj
CS8391	Data Structures	Ms.K.Abhirami
CS8392	Object Oriented Programming	Ms.G.Chandraprabha
EC8395	Communication Engineering	Mr.R.Balakrishnan
CS8381	Data Structures Laboratory	Ms.B.Sangeetha
CS8382	Digital Systems Laboratory	Mr. W. Newton David Raj & Mr.K.Sudarsan
CS8383	Object Oriented Programming Laboratory	Ms.G.Chandrapraba
HS8381	Interpersonal Skills/ Listening & Speaking	Mr.J.Radhakrishnan

III YEAR

SUB CODE	SUBJCT NAME	STAFF NAME
MA8551	Algebra and Number Theory	Dr.G.Jeyakrishnan
CS8591	Computer Networks	Dr.D.Sivakumar
EC8691	Microprocessor & Microcontroller	Mr.R.Thandayuthapani
CS8501	Theory of Computation	Ms.S.Puvaneswari
CS8592	Object Oriented Analysis & Design	Dr.S.M.Uma
OMF551	Product Design and Development	Mr.R.Sriramkumar
EC8681	Microprocessor & Microcontroller Lab	Mr.R.Thandayuthapani
CS8582	Object Oriented Analysis & Design Lab	Mr.R.Sriramkumar
CS8581	Networks Lab	Dr.D.Sivakumar

STAFF NAME SUBJCT NAME SUB CODE Mr.B.Sureshbabu MG8591 Principles of Management Cryptography and Network Security Mr.S.Rajarajan CS8792 **Cloud Computing** Mr.M.Arun CS8791 **OME752** Supply Chain Management Ms.R.Suganthalakshmi Software Project Management IT8075 Ms.S.Puvaneswari CS8088 Wireless Adhoc& Sensor Network Ms.B.Sangeetha CS8711 **Cloud Computing Laboratory** Ms.S.Puvaneswari IT8761 Security Laboratory Mr.S.Rajarajan

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

SUBJECT: THEORY OF COMPUTATION

SEMESTER: V

QUESTION BANK (CS8501) (Version: 3)

PREPARED BY Ms.S.PUVANESWARI / CSE

CS8501

UNIT V **UNDECIDABILITY**

SIGNATURE OF STAFF INCHARGE (Ms.S.Puvaneswari AP / CSE)

Non Recursive Enumerable (RE) Language - Undecidable Problem with RE - Undecidable Problems about TM - Post's Correspondence Problem, The Class P and NP.

TOTAL: 45PERIODS

f J187312

HOD/CSE

S. Pur 18/8/202)

UNIT I AUTOMATA FUNDAMENTALS

Introduction to formal proof - Additional forms of Proof - Inductive Proofs -Finite Automata - Deterministic Finite Automata - Non-deterministic Finite Automata - Finite Automata with Epsilon Transitions

THEORY OF COMPUTATION

UNIT II **REGULAR EXPRESSIONS AND LANGUAGES**

Regular Expressions - FA and Regular Expressions - Proving Languages not to be regular -Closure Properties of Regular Languages – Equivalence and Minimization of Automata.

UNIT III **CONTEXT FREE GRAMMAR AND LANGUAGES**

Automata – Languages of a Pushdown Automata – Equivalence of Pushdown Automata and CFG, Deterministic Pushdown Automata.

CFG - Parse Trees - Ambiguity in Grammars and Languages - Definition of the Pushdown

UNIT IV PROPERTIES OF CONTEXT FREE LANGUAGES

Normal Forms for CFG – Pumping Lemma for CFL – Closure Properties of CFL – Turing Machines – Programming Techniques for TM.

LTPC

3003

9

9

9

9

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE PLAN

Sub. Code	: CS8501
Sub.Name	: Theory of Computation
Staff Name	: Ms.S.Puvaneswari

 Branch / Year / Sem
 : B.E CSE / III / V

 Batch
 : 2019-2023

 Academic Year
 : 2021-22 (ODD)

COURSE OBJECTIVE

- 1. To understand the language hierarchy
- 2. To construct automata for any given pattern and find its equivalent regular expressions
- 3. To design a context free grammar for any given language
- 4. To understand Turing machines and their capability
- 5. To understand undecidable problems and NP class problems

ТЕХТ ВООК

T1: J.E.Hopcroft, R.Motwani and J.D Ullman, —Introduction to Automata Theory, Languages and Computations, Second Edition, Pearson Education, 2003.

REFERENCES

R1: H.R.Lewis and C.H.Papadimitriou, —Elements of the theory of Computation, Second Edition, PHI, 2003.

R2: J.Martin, —Introduction to Languages and the Theory of Computation, Third Edition, TMH, 2003.

R3: Micheal Sipser, —Introduction of the Theory and Computation, Thomson Brokecole, 1997.

WEB RESOURCES

W1. http://math.uaa.alaska.edu/~afkjm/cs351/handouts/finite-auotmata.ppt

(Topic No.4)

W2. www.cs.rpi.edu/~moorthy/Courses/modcomp/slides/Regular_Properties.ppt

(Topic No. 11)

- W3. https://nptel.ac.in/courses/106103070/#(Topic No.18)
- W4. www.cs.rpi.edu/~moorthy/Courses/modcomp/slides/Turing.ppt (Topic No.23)

W5. web.cs.wpi.edu/~kal/courses/fcs/module9/grahneclass18reandrec.ppt(Topic No.25)

Topic	Торіс	Books for	Page No.	Teaching Mathedale m	No. of	Cumulative
No		Reference		Methodology	Hours Required	No. of periods
UNIT I		AUTOMA	ΓA FUNDAM	IENTALS	•	9
1.	Introduction to formal proof	T1	5 - 13	BB / PPT	1	1
2.	Additional forms of Proof	T1	13 – 17	BB / PPT	1	2
3.	Inductive Proofs	T1	19 - 26	BB / PPT	1	3
4.	Finite Automata	T1 W1	37 -45	РРТ	1	4
5.	DFA	T1 R1	45 – 52 55 - 62	BB / PPT	1	5
6.	NFA	T1	55 – 60	VIDEO	2	7
7.	Finite Automata with Epsilon Transitions	T1	72 – 77	VIDEO	2	9

LEARNING OUTCOME

Upon the completion of this unit, students should be able to

- Understand the various mathematical proving techniques
- Understand the basic concepts of finite automata
- Convert NFA to DFA

UNIT II REGULAR EXPRESSIONS AND LANGUAGES					9	
8.	Regular Expressions	T1 R2	85 - 88 92 - 95	BB / PPT	2	11
9.	FA and Regular Expressions	T1	92 - 107	VIDEO	3	14
10.	Proving Languages not to be regular	T1	128 - 130	BB / PPT	1	15
11.	Closure Properties of Regular Languages	T1 W2	133 - 146	PPT	1	16
12.	Equivalence and Minimization of Automata.	T1	155 - 165	VIDEO	2	18

LEARNING OUTCOME

Upon the completion of this unit, students should be able to

- Define the regulation expression
- Understand the relationship between FA and Regular expression
- Prove that the given language is regular or not

UNIT I	UNIT III CONTEXT FREE GRAMMAR AND LANGUAGES					9
13.	CFG	T1	171 - 181	BB / PPT	2	20
14.	Parse Trees	T1	183 - 192	SIM	1	21
15.	Ambiguity in Grammars and Languages	T1	207 - 214	VIDEO	1	22
16.	Definition of the Pushdown Automata	T1	225 - 232	BB / PPT	1	23
17.	Languages of a Pushdown Automata	T1	234 - 240	VIDEO	2	25
18.	Equivalence of Pushdown Automata and CFG	T1 W3	243 - 250	NPTEL	1	26
19.	Deterministic Pushdown Automata.	T1	252 -255	BB / PPT	1	27

FURMA	AT : QP09				KCE/DEPT. C	JF C3E
Topic No	Торіс	Books for Reference	Page No.	Teaching Methodology	No. of Hours Required	Cumulative No. of periods
LEAR	NING OUTCOME		<u> </u>			
Upon t	the completion of this unit, s					
٠	Know about Context Free G		-	- Trees		
	Understand the concepts of					
	Understand the relationship					
UNIT I						9
20.		T1	261 - 274	VIDEO	3	30
21.	10	T1	279 - 285	BB / PPT	1	31
22.	CFL	T1	287 – 296	BB / PPT	1	32
23.	· Turing Machines	T1 W4	324 - 334	PPT	2	34
24.	Programming Techniques for TM.	T1	337 - 342	VIDEO	2	36
•	Understand the various typ Know the concepts of Turin Solve the problem using Tu	ng Machines				
UNIT V			<u></u>			9
25.	Non Recursive Enumerable (RE) Language	T1 W5	378 - 382	РРТ	1	37
26.	Undecidable Problem with RE	T1	383 - 389	BB / PPT	2	39
27.	Undecidable Problems about TM	T1	392 - 399	BB / PPT	2	41
28.	Post's Correspondence Problem,	T1	401 - 411	VIDEO	2	43
29.	The Class P and NP.	T1 R3	426 - 434 256 - 258	VIDEO	2	45
	NING OUTCOME the completion of this unit, s Know the various concept o	students shou	uld be able to) D		<u></u>

- Rnow the various concept of Non Recursive Languag
 Determine whether the problem is decidable or not.
- Understand the basic concepts of Class P and NP

COURSE OUTCOME

At the end of the course, the students will be able to

- Construct automata, regular expression for any pattern.
- Write Context free grammar for any construct.
- Design Turing machines for any language.
- Propose computation solutions using Turing machines.
- Derive whether a problem is decidable or not.

CONTENT BEYOND THE SYLLABUS

1. Tractable and Intractable Problems

INTERNAL ASSESSMENT DETAILS

ASST. NO.	Ι	II	MODEL
Topic Nos.	1-10	11-19	1-29
Date			

ASSIGNMENT DETAILS

ASSIGNMENT	Ι	II
Topic Nos. for	1-10	PCE
reference		
Deadline		

	ASSIGNMENT I (50)		ASSIGNMENT II (50)
	(BEFORE CAT – I)		(BEFORE CAT – II)
	Topic No for reference: 1 – 10		PCE Activity
Pa	rt – A	Activity	y – 1: GATE Question Paper Solving
1.	Define Finite Automaton	> I	Push down Automata
2.	Enumerate the difference between NFA		Turing Machine
	and DFA	Activity	y – 2: Problem Solving
3.	Write down the rules for Pumping Lemma	> (Chomsky Normal Form
	for Regular languages	> (Greibach Normal Form
4.	Define ambiguous grammar	Activity	y – 3:Quiz
5.	What is meant by derivation?	≻ I	Parse trees
Pa	rt – B	\succ A	Ambiguity in Context Free Grammar
1.	Prove the equivalent of NFA and DFA	Activity	y – 4:NPTEL Swayam Assignment
	using subset construction.		Turing Machines
2.	Explain in detail about Finite Automata	Activity	y – 5:Mindmapping
	with ϵ moves with an example	> (Closure properties of Context Free
3.	a.Construct a ϵ -NFA for the regular	1	anguage
	expression 10+(0+11)0*1.	Activity	y – 6:Simulation
	b.If G is the grammar	≻ I	PDA
	S->SbS/a show that G is ambiguous.	> 7	Turing Machines
	-		

		COURSE	ASSESSN	IENT PL	AN			
CO	CO Description	Weightage	CAT1	CAT2	MODEL	ASSIGN	PCE	AU
C01	Construct automata, regular expression for any pattern.	30%	V			√		
CO2	Write Context free grammar for any construct.	15%						
CO3	Design Turing machines for any language.	20%						
CO4	Propose computation solutions using Turing machines.	20%					\checkmark	
C05	Derive whether a problem is decidable or not.	15%						

COURSE OUTCOME ALLIGNMENT MATRIX -	_ MODEL EXAM SAMPLE (ILESTION SET
COURSE OUTCOME ALLIGNMENT MATRIX	- MUDEL EAAM SAMPLE Q	UESTION SET

	KSE UUTCOME ALLIGNMENT MATRIX -		1	v	
Q.No	Question	Marks	CO	BTL	PI
1.	Define Finite Automata.	2	CO1	L1	1.4.1
2.	Outline the concepts of principle of mathematical induction	2	C01	L2	1.3.1
3.	What is meant by regular expression?	2	CO1	L1	1.4.1
4.	Summarize the definition of pumping lemma for regular set.	2	C01	L2	1.4.1
5.	Build CFG for a signed integer constant in C	2	CO2	L3	1.4.1
6.	Compare PDA acceptance by empty stack method with acceptance by the final state method	2	CO2	L2	2.2.4
7.	Illustrate the configuration of Turing Machine	2	CO3	L2	1.4.1
8.	Define simplification of CFG.	2	CO2	L1	1.4.1
9.	Identify the properties of recursive and recursive enumerable language	2	C05	L3	2.1.2
10.	Apply the concept of decidability, show that halting problem is decidable or not?	2	CO5	L3	2.4.2
11. a.i	Prove the following by the principle of induction $\sum_{k=1}^{\infty} k^2 = \underline{n(n+1)(2n+1)}$.	6	C01	L5	2.4.1
11.a.ii	P.T A language is accepted by some DFA iff L is accepted by some NFA.	7	C01	L5	2.4.1
11.b.i	Assess a non-deterministic finite automaton accepting the set of strings over {a,b} ending in aba. Use it to construct a DFA accepting the some set of strings.	6	C01	L5	3.2.2

Q.No	Question	Marks	CO	BTL	PI
11.b.ii	Deduct into DFA for the following ε - NFA $\xrightarrow{\circ} p (q,t) = 0 \qquad (q) \qquad (r) \qquad (p) \qquad ($	7	C01	L5	3.4.1
12.a.i	Outline the steps to Convert the following NFA into regular expression. $\xrightarrow{0,1} \bigcirc 1 \longrightarrow \textcircled{0,1} \longrightarrow 0,1$	6	C01	L2	3.4.1
12.a.ii	S.T the set L= $\{0^{i2} i \ge 1\}$ is not regular	7	C01	L2	2.4.1
12.b.i	S.T the set L={0 ⁿ n is a perfect square} is not regular	6	C01	L2	2.4.1
12.b.ii	Illustrate the steps to Construct an NFA from the regular expression ((a b)*a	7	C01	L2	3.2.2
13.a.i	Construct a parse tree and compute left most derivation, rightmost derivation for a given input, (a+b) and a++	7	CO2	L3	3.2.2
13.a.ii	Construct a PDA that accept the given CFG: S→xaax, X→ax bx ε	6	C02	L3	3.2.2
13.b.i	Solve that if L is N(M1)(Language accepted by empty stack) for some PDA M1,then L is N(M2)(Language accepted by final state) for some PDA.	7	CO2	L3	2.1.3
13.b.ii	Construct PDA for the language L={ww ^R w in (a+b)*}.	6	CO2	L3	3.2.2
14.a	List the steps to convert the following grammar into an equivalent one with no unit productions and no useless symbols (Simplification of CFG) and convert into CNF form: S-> ABA, A->aAA aBc bB, B-> A bB Cb, C->CC cC	13	CO2	L1	3.2.2
14.b	Show and explain in detail about programming techniques for TM	13	CO3	L1	2.1.2
15.a	Examine that L _{ne} is not recursive and also prove that L _{ne} is RE	13	CO5	L4	1.4.1
15.b	Analyze the concepts about RICE theorem and Simplify L _u is RE but not recursive	13	CO5	L4	1.4.1
16.a	Construct PDA from CFG. PDA is given by P=({p,q},{0,1},{X,Z}, δ ,q,Z), δ is defined by δ (p,1,Z)={(p,XZ)}, δ (p, ϵ ,z)={(P, ϵ)}, δ (p, 1,x)={(p,XX)}, δ (q,1,X)={(q, ϵ)}, δ (p,0,X)={(q,X)}, δ (q,0,Z)={(p,Z)}	15	CO2	L6	2.1.3
16.b	Write down the steps to provide solution to the PCP problem The TM M={{q1,q2,q3},{0,1},{0,1,B}, δ ,q1,B,{q3}} where δ is given by δ (q1,0)={(q2,1,R)}, δ (q1,1)={(q2,0,L)},	15	CO4	L6	2.2.3

FORMAT : QP09

$\delta(q1,B) = \{(q2,1,L)\}, \delta(q2,0) = \{(q3,0,L)\}, \delta(q2,1) = \{(q1,0,R)\}, \delta(q1,B) = \{(q2,0,R)\}$ and input string w=01. Build the solution.			
--	--	--	--

ASSESSMENT PAPER QUALITY MATRIX

PART	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6
А	1,3,8	2,4,6,7	5,9,10			
В	14.a	12.a.i. & ii	13.a.i & ii	15.a.i & ii	11.a.i & ii	
D	14.b	12.b.i & ii	13.b.i & ii	15.b.i ⅈ	11.b.i & ii	
С						16.a
L.						16.b
Total	19	21	19	13	13	15
Distribution	40	0%	32	2%	28	%

S. Pur Prepared by 18/8/202) Ms.S.PUVANESWARI

3)2 Verified by HOD/CSE

18/8/2021 2. pro Approved by PRINCIPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING ACADEMIC YEAR 2021-2022 / ODD SEMESTER Year/Sem : III / V

III CSE NAMELIST

S.NO	REGISTER NO	NAME
1.	821119104001	Aarthi. R
2.	821119104002	Aiyappan. S
3.	821119104003	Ajay Prasanna. G
4.	821119104005	Akash .K
5.	821119104006	Akshayalakshmi.
6.	821119104007	Aravind. A
7.	821119104008	Avudaiappan .A
8.	821119104009	Bakiya Lakshmi
9.	821119104010	Balakrishnan. M
10.	821119104011	Bavya. S
11.	821119104012	Bhavatharani .T
12.	821119104013	Deepika. P
13.	821119104014	Devipriya. S
14.	821119104015	Dharani. G
15.	821119104016	Divakaran. J
16.	821119104017	Elayadharshini
17.	821119104018	Fasila Afreen .J
18.	821119104019	Gokul .M
19.	821119104020	Gomathi .A
20.	821119104021	Gopinath. P
21.	821119104022	Govindharajan.
22.	821119104023	Kamali. K
23.	821119104024	Kanishkar .K
24.	821119104025	Karkuzhali. N
25.	821119104026	Karthika. R

S.NO	REGISTER NO	NAME
26.	821119104027	Mohamed Yasir.
27.	821119104028	Muralidharan. N
28.	821119104029	Nandhini. J
29.	821119104031	Pavitha .P
30.	821119104032	Priyadharshini
31.	821119104033	Ramakrishnan .E
32.	821119104034	Rethinapriya. T
33.	821119104035	Sachin .R
34.	821119104037	Sathish .T
35.	821119104038	Selvabharathi. S
36.	821119104039	Shakthivel .M
37.	821119104040	Siva .G
38.	821119104041	Sivaranjani . S
39.	821119104043	Suguna. S
40.	821119104044	Suresh Karthik .J
41.	821119104045	Suruthi. S
42.	821119104046	Surya. A
43.	821119104047	Swetha. S
44.	821119104048	Tharanika. K
45.	821119104049	Varun. K
46.	821119104050	Vengatramanan.
47.	821119104051	Vignesh. K
48.	821119104052	Vikiramadhithan
49.	821119104053	Viswa .A

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING ACADEMIC YEAR 2021 - 2022 ODD SEMESTER INDIVIDUAL STAFF TIMETABLE

STAFF NAME: Ms.S.Puvaneswari

Session	1	2	11.30	3		4	5
Day	09.30am 10.30am	10.30am 11.30am	am - 11.45 am	11.45am 12.45pm	– 12.45 pm – 01.30 pm	01.30pm 02.30pm	02.30pm 04.00pm
MON						_	\
TUE			-	CS8501	-	IT8075	CS8711
WED	CS8501		¥.	IT8075	REAK		
THU			BREAK		LUNCH BREAK	1T8075	CS8501
FRI					- 3	CS8501	
SAT		IT8075	-		-		

SUB CODE	SUB NAME	TUTORIAL / ELECTIVE	CREDITS	YEAR / SEM	PERIODS / WEEK	STRENGTH
			THEORY			
CS8501	Theory of Computation		3	III / V	4	49
IT8075	Software Project Management		3	IV / VII	4	42
		P	RACTICAL			
CS8711	Cloud Computing Laboratory		2	IV / VII	2	42
P. i	e bi	8. Pur	18(8)21			STR

DEPT TTC 18[2]2)

STAFF INCHARGE

HOD/CSE / //

CS8501 – THEORY OF COMPUTATION

UNIT I AUTOMATA FUNDAMENTALS

Introduction to formal proof – Additional forms of Proof – Inductive Proofs –Finite Automata – Deterministic Finite Automata – Non-deterministic Finite Automata – Finite Automata with Epsilon Transitions

What is TOC?

• In theoretical computer science, the theory of computation is the branch that deals with whether and how efficiently problems can be solved on a model of computation, using an algorithm.

- The field is divided into three major branches:
- automata theory,
 computability theory and
- computability theory and
 computational complexity theory.
- In order to perform a rigorous study of computation, computer scientists work with a mathematical abstraction of computers called
- scientists work with a mathematical abstraction of computers called a model of computation.
- There are several models in use, but the most commonly examined is the Turing machine.
- In theoretical computer science, automata theory is the *study of abstract machines* and the computational problems that can be solved using these machines.
- These abstract machines are called automata. This automaton consists of
 - states (represented in the figure by circles), and
 - transitions (represented by arrows).

FORMAL PROOF

- Usually the **truth** of a statement is solved by a **detailed sequence of steps and reasons.**
- Computer scientists take the extreme view that a formal proof of the correctness of a program should go hand in hand with the writing of the program itself.
- Theory of computation is based on mathematical computations. A mathematical computations can be solved by any one of the techniques
 - 1. Proofs about sets.
 - 2. Proofs by contradiction.
 - 3. Proofs by counterexample.
 - 4. Deductive Proofs
 - 5. Inductive Proofs
 - 6. Structural Induction

Deductive Proofs

- A deductive proofs consists of a sequence of statements whose truth leads from some *initial* statements called *Hypothesis* to *Conclusion.*
- Each step in the proof must follow, by some accepted logical principle from either the given facts or some of the previous statements in the deductive proof or a combination of these on statements.

Example

- "if H then C"
- The theorem proves by going from hypothesis H to a conclusion C.
- Example: Prove 2^x > x² if x >=4 using deductive proofs
- Solution
 - Given $2^x > x^2$ where $x \ge 4$
 - Consider x = 5(x>=4)
 - LHS = 8 RHS = 25(true)
- Hence if x >=4 then the given statement is true

ADDITIONAL FORMS OF PROOF

• Proofs about sets Definition of set:

- Set is a collection of elements or items.

- Proving Equivalence about sets:
 - If A and B are 2 expressions, then every elements in the set A is in set B and every elements in set B is in set A.
 - Let us prove PUQ=QUP

		PUQ	=QUP
• LH	IS		
		Statement	Justification
	1	X is in PUQ	Given
	2	X is in P or X is in Q	By Definition of Union
	3	X is in Q or X is in P	By Definition of Union
	4	X is in QUP	By Definition of Union from 3 rd rule
• RH	IS		
		Statement	Justification
	1	X is in QUP	Given
	2	X is in Q or X is in P	By Definition of Union
	3	X is in P or X is in Q	By Definition of Union
	4	X is in PUQ	By Definition of Union from 3 rd rule

	Statement	Justification
1.	$x \text{ is in } R \cup (S \cap T)$	Given
2.	x is in R or x is in $S \cap T$	(1) and definition of union
3.	x is in R or x is in both S and T	(2) and definition of intersection
4.	$x \text{ is in } R \cup S$	(3) and definition of union
5.	x is in $R \cup T$	(3) and definition of union
6.	$x \text{ is in } (R \cup S) \cap (R \cup T)$	(4), (5), and definition of intersection

	U	nly if
	Statement	Justification
1.	$x \text{ is in } (R \cup S) \cap (R \cup T)$	Given
2.	$x ext{ is in } R \cup S$	(1) and definition of intersection
3.	$x \text{ is in } R \cup T$	(1) and definition of intersection
4.	$x ext{ is in } R ext{ or } x ext{ is in } $ both $S ext{ and } T$	(2), (3), and reasoning about unions
5.	x is in R or x is in $S \cap T$	(4) and definition of intersection
6.	$x \text{ is in } R \cup (S \cap T)$	(5) and definition of union

Proof by contradiction (contrapositive)

- The contrapositive of the statements "if H then C" is "if not C then not H".
- A statement and its contrapositive are either both true or false.
- Example: Prove PUQ=QUP using contradiction. Solution:
 - 1. By contradiction assume PUQ != QUP
 - 2. Now consider x is in Q or x is in P
 - 3. Then it also implies \boldsymbol{x} is in \boldsymbol{P} or \boldsymbol{x} is in \boldsymbol{Q}
 - 4. So the assumption is false
 - 5. Hence PUQ=QUP is proved

Proofs by Counterexample

- Prove the statements with an example for all possible conditions.
- Example
 - Prove All primes are odd.
 - Solution
 - Take counter example as 2 which is a prime number. But it is not an odd number.

Hence this proves the given statement is false

SUMMARY

- Automata Theory
- Formal Proof Techniques
- Proof about sets
- Proof by contradiction
- Proof by counter example

Assignment

- Solve by Deductive proof method,
- $R \cap (S \cup T) = (R \cap S) \cup (R \cap T)$

<u>UNIT I</u> <u>AUTOMATA FUNDAMENTALS</u> <u>PART – A</u>

1.	Formally define I Finite Automata		(AU - ND 2020/ 2019)	REMEMBER BT - L1	C01	PI 1.4.1		
		achine that accepts of tion (or run) of the a	r rejects string			duces a		
	• A DFA is a quintuple $A=(Q, \sum, \delta, q_0, F)$							
	Where Q- finite set of states							
	Σ -finite set o	of input symbols						
	q₀,∑, Q-is the	start state						
	F≤Q –is the s	et of final states						
	δ :Q*Σ→0	Q-Transition function						
2.	State any four wa	ys of theorem	(AU – ND	REMEMBER	C01	PI		
	proving.		2020)	BT - L1		1.4.1		
-	Γhe four ways of the	orem proving are,						
	• Deductive							
	• If and only if							
	Induction							
	• Proof by contrac	liction.						
3.	Prove by induction	on on n>=1	(AU – ND	UNDERSTANI	D C01	PI		
	n		2019)	BT - L2		2.1.3		
	that $\sum 1/i(i+1) =$	n/ (n+1)						
	i=1							
		ep approach for a pro	of by method	of induction				
	i. Basis: Let n							
	LHS = 0.5 and RI	•						
	Hence, LHS = RH	ypothesis : Consider :	$n = n \pm 1$ thon					
	n+1	n	$\Pi = \Pi + I \ \Pi \in \Pi_{i}$,				
		$= \sum_{i=1}^{n} \frac{1}{i(i+1)} + \frac{1}{i(i+1)}$	n+1)(n+1+1)					
	i	i						
		=n / (n+1) + 1 / (n+	-1)(n+2)					
	= n (n+2) + 1 / ((n+1)(n+2))							
	$= n^{2} + 2n + 1 / ((n+1)(n+2))$							
	= (n+1) (n+1) / ((n+1)(n+2))							
		= (n+1) / (n+2)						
	$DUS_{1}n/(n+1)$	= (n + 1) / (n + 1 + 1)	-(n+1)/(n	+2)				
	кпз: п / (п+1)	= (n+1) / (n+1+1)	- (II+I) / (II	- 2)				

4.	Denn	e Finite Automata.		REMEMBER BT - L1	C01	PI 1.4.1
	 Finito /	Automata is a mathematical model of a s	wet		nnute and	
		stem can be in any one of finite number	-		-	-
	-	of past inputs and determines the behav				
5.	-	e deductive proof.	101 0	REMEMBER	CO1	PI
01				BT - L1		1.4.1
	A dedu	ctive proof consists of a sequence of st	ater	nents whose trut	h leads from	m som
		statements called "Hypothesis" to "conclu				
		ollow, by some accepted logical principa			-	-
	the pre	vious statements in the deductive proof o	or a	combination of th	ese.	
	Ex: "if I	H then C". The theorem proves by going f	rom	hypothesis H to a	conclusion	С.
6.	Gene	rate NFA – ε to represent a*b c		APPLY	C01	PI
				BT - L3		3.2.1
7.	two c	$\frac{e}{2}$	•(s	APPLY BT - L3 0	0,1	PI 3.2.1
	(q0			((q2		
8.	Enum	derate the difference between DFA and	1	UNDERSTAND	C01	PI
01	NFA.		-	BT - L2		2.2.5
	S.No	DFA		NFA	A	
	1.	Every input string leads to the unique	For	the same input t	here can be	more
		state of FA.	tha	in one next state.		
	2.	Conversion of regular expression to	Сог	nversion is easier.		
		DFA is complex.				
	3.	DFA requires more memory for	NF	A requires more	computati	ons to
		storing state information.	ma	tch r.e with input		
	4.	In DFA there is no ε -transitions.	In l	NFA ε-transitions	-	
9.	Defin	e Automata theory.		REMEMBER	C01	PI
				BT - L1		1.4.1
				مرام محمد المراجع	two at me a ale	
		etical computer science, automata theo propriately, abstract 'mathematical' mac	-			

		e / Name: CS8501 ,	Theory of	
a	itomata. This automaton consists of			
•	states (represented in the figure by circles),			
•	Transitions (represented by arrows).			
10.	What are the applications of automata theory?	REMEMBER	C01	PI
		BT - L1		1.4.2
T	he automata theory can be applied ,			
•	In compiler construction.			
•	In switching theory and design of digital circuits			
•	To verify the correctness of a program.			
•	Design and analysis of complex software and ha	rdware systems.		
•	To design finite state machines such as Moore and	nd Mealy machine	s.	
11.	What are the components of Finite automato	n REMEMBER	C01	PI
	model?	BT - L1		1.4.
Ī	The components of FA model are Input tape, Read c	ontrol and finite c	ontrol.	
•	The input tape is divided into number of cells. Ea	ach cell can hold o	ne i/p sym	bol
•	The read head reads one symbol at a time and m	oves ahead.		
•	Finite control acts like a CPU. Depending on the	current state and	l input sym	bol rea
	from the input tape it changes state.			
12.	Define finite state systems.	REMEMBER	C01	PI
		BT - L1		1.4.
F	A finite state system or finite state machine is a "M	athematical mode	of a syst	om wit
V	A finite state system or finite state machine is a "M ertain input, and finally given an output. The in various states, and these states are called as intermo	put is processed ediate state.	by going	throug
V	rertain input, and finally given an output. The invarious states, and these states are called as interme Prove 1+2+3++n = n (n + 1) / 2 using	put is processed ediate state. UNDERSTAND		throug PI
v 13.	rertain input, and finally given an output. The invarious states, and these states are called as intermore Prove 1+2+3++n = n (n + 1) / 2 using induction method.	nput is processed ediate state. UNDERSTAND BT - L2	by going	throug PI
v 13.	<pre>rertain input, and finally given an output. The in various states, and these states are called as intermo Prove 1+2+3++n = n (n + 1) / 2 using induction method. Consider the two step approach for a proof by meth</pre>	nput is processed ediate state. UNDERSTAND BT - L2	by going	throug PI
v 13.	<pre>tertain input, and finally given an output. The in various states, and these states are called as intermo Prove 1+2+3++n = n (n + 1) / 2 using induction method. Consider the two step approach for a proof by meth i. Basis: Let n = 1 then</pre>	nput is processed ediate state. UNDERSTAND BT - L2	by going	throug PI
v 13.	<pre>tertain input, and finally given an output. The in trarious states, and these states are called as intermo Prove 1+2+3++n = n (n + 1) / 2 using induction method. Consider the two step approach for a proof by meth i. Basis: Let n = 1 then LHS = 1 and RHS = 1 + 1 / 2 = 1</pre>	nput is processed ediate state. UNDERSTAND BT - L2	by going	throug PI
v 13.	<pre>tertain input, and finally given an output. The in trarious states, and these states are called as intermo Prove 1+2+3++n = n (n + 1) / 2 using induction method. Consider the two step approach for a proof by meth i. Basis: Let n = 1 then LHS = 1 and RHS = 1 + 1 / 2 = 1 Hence, LHS = RHS.</pre>	nput is processed ediate state. UNDERSTAND BT - L2	by going	throug PI
v 13.	<pre>tertain input, and finally given an output. The in trarious states, and these states are called as intermed Prove 1+2+3++n = n (n + 1) / 2 using induction method. Consider the two step approach for a proof by meth i. Basis: Let n = 1 then LHS = 1 and RHS = 1 + 1 / 2 = 1 Hence, LHS = RHS. ii. Induction hypothesis:</pre>	nput is processed ediate state. UNDERSTAND BT - L2 od of induction	by going	throug PI
v 13.	tertain input, and finally given an output. The in- various states, and these states are called as intermed Prove 1+2+3++n = n (n + 1) / 2 using induction method. Consider the two step approach for a proof by meth i. Basis: Let n = 1 then LHS = 1 and RHS = 1 + 1 / 2 = 1 Hence, LHS = RHS. ii. Induction hypothesis: To prove 1 + β + γ + + n = n (n + 1) / β + (nput is processed ediate state. UNDERSTAND BT - L2 od of induction	by going	throug PI
v 13.	tertain input, and finally given an output. The interaction states, and these states are called as intermed Prove 1+2+3++n = n (n + 1) / 2 using induction method. Consider the two step approach for a proof by meth i. Basis: Let n = 1 then LHS = 1 and RHS = 1 + 1 / 2 = 1 Hence, LHS = RHS. ii. Induction hypothesis: To prove 1 + β + γ + + n = n (n + 1) / β + (Consider n = n + 1 then,	nput is processed ediate state. UNDERSTAND BT - L2 od of induction n + 1)	by going	throug PI
v 13.	tertain input, and finally given an output. The in- tertain input, and these states are called as intermed Prove 1+2+3++n = n (n + 1) / 2 using induction method. Consider the two step approach for a proof by meth i. Basis: Let n = 1 then LHS = 1 and RHS = 1 + 1 / 2 = 1 Hence, LHS = RHS. ii. Induction hypothesis: To prove 1 + β + γ + + n = n (n + 1) / β + (Consider n = n + 1 then, 1 + β + γ + + n + (n + 1) = n (n + 1) / β	nput is processed ediate state. UNDERSTAND BT - L2 od of induction n + 1)	by going	throug PI
v 13.	tertain input, and finally given an output. The in- tertain input, and finally given an output. The in- tertain states, and these states are called as intermed Prove 1+2+3++n = n (n + 1) / 2 using induction method. Consider the two step approach for a proof by meth- i. Basis: Let n = 1 then LHS = 1 and RHS = 1 + 1 / 2 = 1 Hence, LHS = RHS. ii. Induction hypothesis: To prove 1 + β + γ + + n = n (n + 1) / β + (Consider n = n + 1 then, 1 + β + γ ++ n + (n + 1) = n (n + 1) / β + (n = n + 3n + 2 / 2)	nput is processed ediate state. UNDERSTAND BT - L2 od of induction n + 1) n + 1) 2	by going	throug PI
v 13.	tertain input, and finally given an output. The in- tertain input, and finally given an output. The in- tertain reaction states, and these states are called as intermed Prove 1+2+3++n = n (n + 1) / 2 using induction method. Consider the two step approach for a proof by meth- i. Basis: Let n = 1 then LHS = 1 and RHS = 1 + 1 / 2 = 1 Hence, LHS = RHS. ii. Induction hypothesis: To prove 1 + β + γ + + n = n (n + 1) / β + (Consider n = n + 1 then, 1 + β + γ ++ n + (n + 1) = n (n + 1) / β + (n = n + 3n + 2 / 2 = (n + 1) (n + 2),	nput is processed ediate state. UNDERSTAND BT - L2 od of induction n + 1) n + 1) 2	by going	throug PI
13.	tertain input, and finally given an output. The in- tertain input, and these states are called as intermed Prove 1+2+3++n = n (n + 1) / 2 using induction method. Consider the two step approach for a proof by meth i. Basis: Let n = 1 then LHS = 1 and RHS = 1 + 1 / 2 = 1 Hence, LHS = RHS. ii. Induction hypothesis: To prove 1 + β + γ + + n = n (n + 1) / β + (Consider n = n + 1 then, 1 + β + γ + + n + (n + 1) = n (n + 1) / β + (n = n + 3n + 2 / 2 = (n + 1) (n + 2), Thus it is proved that 1 + 2 + γ + + n = n (n + 1)	put is processed ediate state. UNDERSTAND BT - L2 od of induction n + 1) n + 1) 2 / 2) / β.	by going	throug PI 2.1.
13.	tertain input, and finally given an output. The in- tertain input, and finally given an output. The in- tertain reaction states, and these states are called as intermed Prove 1+2+3++n = n (n + 1) / 2 using induction method. Consider the two step approach for a proof by meth- i. Basis: Let n = 1 then LHS = 1 and RHS = 1 + 1 / 2 = 1 Hence, LHS = RHS. ii. Induction hypothesis: To prove 1 + β + γ + + n = n (n + 1) / β + (Consider n = n + 1 then, 1 + β + γ ++ n + (n + 1) = n (n + 1) / β + (n = n + 3n + 2 / 2 = (n + 1) (n + 2),	nput is processed ediate state. UNDERSTAND BT - L2 od of induction n + 1) n + 1) 2	by going	throug PI 2.1.: PI
13. (tertain input, and finally given an output. The in- various states, and these states are called as intermed Prove 1+2+3++n = n (n + 1) / 2 using induction method. Consider the two step approach for a proof by meth i. Basis: Let n = 1 then LHS = 1 and RHS = 1 + 1 / 2 = 1 Hence, LHS = RHS. ii. Induction hypothesis: To prove 1 + β + γ + + n = n (n + 1) / β + (Consider n = n + 1 then, 1 + β + γ ++ n + (n + 1) = n (n + 1) / β + (n = n + 3n + 2 / 2 = (n + 1) (n + 2), Thus it is proved that 1 + 2 + γ + + n = n (n + 1) Define the term Epsilon transition.	nput is processed ediate state. UNDERSTAND BT - L2 od of induction n + 1) n + 1) 2 / 2) / β. REMEMBER BT - L1	cO1 CO1	throug PI 2.1. PI 1.4.
13. (1 14.	rertain input, and finally given an output. The in- rarious states, and these states are called as intermed Prove 1+2+3++n = n (n + 1) / 2 using induction method. Consider the two step approach for a proof by meth- i. Basis: Let n = 1 then LHS = 1 and RHS = 1 + 1 / 2 = 1 Hence, LHS = RHS. ii. Induction hypothesis: To prove 1 + β + γ + + n = n (n + 1) / β + (n + 1) = n (n + 1) = n (n + 1) / β + (n + 1) = n (n + 1) / β + (n + 1) = n (n + 1) / β + (n + 1) = n (n + 1) / β + (n + 1) = n (n + 1) / β + (n + 1) = n (n + 1) / β + (n + 1) = n (n + 1) / β + (n + 1) = n (n + 1) / β + (n + 1) = n (n + 1) / β + (n + 1) = n (n + 1) / β + (n + 1) = n (n + 1) / β + (n + 1) = n (n + 1) / β + (n + 1) = n (n + 1) / β + (n + 1) = n (n + 1) / β + (n + 1) =	nput is processed ediate state. UNDERSTAND BT - L2 od of induction n + 1) n + 1) 2 / 2) / β. REMEMBER BT - L1	cO1 CO1	throug PI 2.1. PI 1.4.
13. (1 14.	tertain input, and finally given an output. The in- various states, and these states are called as intermed Prove 1+2+3++n = n (n + 1) / 2 using induction method. Consider the two step approach for a proof by meth i. Basis: Let n = 1 then LHS = 1 and RHS = 1 + 1 / 2 = 1 Hence, LHS = RHS. ii. Induction hypothesis: To prove 1 + β + γ + + n = n (n + 1) / β + (Consider n = n + 1 then, 1 + β + γ ++ n + (n + 1) = n (n + 1) / β + (n = n + 3n + 2 / 2 = (n + 1) (n + 2), Thus it is proved that 1 + 2 + γ + + n = n (n + 1) Define the term Epsilon transition.	nput is processed ediate state. UNDERSTAND BT - L2 od of induction n + 1) n + 1) 2 / 2) / β. REMEMBER BT - L1	cO1 CO1	PI 2.1.: PI 1.4.:
13. (1 14.	rertain input, and finally given an output. The in- rarious states, and these states are called as intermed Prove 1+2+3++n = n (n + 1) / 2 using induction method. Consider the two step approach for a proof by meth i. Basis: Let n = 1 then LHS = 1 and RHS = 1 + 1 / 2 = 1 Hence, LHS = RHS. ii. Induction hypothesis: To prove 1 + β + γ + + n = n (n + 1) / β + (n - 2) / β + (n + 1) = n (n + 1) / β + (n - 2) /	aput is processed ediate state. UNDERSTAND BT - L2 od of induction n + 1) n + 1) 2 / 2) / β. REMEMBER BT - L1 another state, w	cO1 CO1	throug PI 2.1. PI 1.4.
13. (1 14.	rertain input, and finally given an output. The in- rarious states, and these states are called as intermed Prove 1+2+3++n = n (n + 1) / 2 using induction method. Consider the two step approach for a proof by meth i. Basis: Let n = 1 then LHS = 1 and RHS = 1 + 1 / 2 = 1 Hence, LHS = RHS. ii. Induction hypothesis: To prove 1 + β + γ + + n = n (n + 1) / β + (Consider n = n + 1 then, 1 + β + γ ++ n + (n + 1) = n (n + 1) / β + (m = n + 3n + 2 / 2 = (n + 1) (n + 2), Thus it is proved that 1 + 2 + γ + + n = n (n + 1) Define the term Epsilon transition.	nput is processed ediate state. UNDERSTAND BT - L2 od of induction n + 1) n + 1) 2 / 2) / β. REMEMBER BT - L1	cO1 CO1	PI 2.1.: PI 1.4.:
13. (1 14.	ertain input, and finally given an output. The in- various states, and these states are called as intermed Prove 1+2+3++n = n (n + 1) / 2 using induction method. Consider the two step approach for a proof by meth i. Basis: Let n = 1 then LHS = 1 and RHS = 1 + 1 / 2 = 1 Hence, LHS = RHS. ii. Induction hypothesis: To prove 1 + β + γ + + n = n (n + 1) / β + (n Consider n = n + 1 then, 1 + β + γ + + n + (n + 1) = n (n + 1) / β + (n = n + 3n + 2 / 2) = (n + 1) (n + 2) , Thus it is proved that 1 + 2 + γ + + n = n (n + 1) Define the term Epsilon transition.	aput is processed ediate state. UNDERSTAND BT - L2 od of induction n + 1) n + 1) 2 / 2) / β. REMEMBER BT - L1 another state, w	cO1 CO1	PI 2.1.: PI 1.4.:
13. 14.	ertain input, and finally given an output. The in- various states, and these states are called as intermed Prove 1+2+3++n = n (n + 1) / 2 using induction method. Consider the two step approach for a proof by meth i. Basis: Let n = 1 then LHS = 1 and RHS = 1 + 1 / 2 = 1 Hence, LHS = RHS. ii. Induction hypothesis: To prove 1 + β + γ + + n = n (n + 1) / β + (n - 2) / β + (n + 1) = n (n + 1) / β + (n - 2) / β	aput is processed ediate state. UNDERSTAND BT - L2 od of induction n + 1) n + 1) 2 / 2) / β. REMEMBER BT - L1 another state, w	CO1 CO1 ithout read	PI 2.1.3 PI 1.4.2 ding an

	m state p to q on i		
Start a			
(p)		Final state	
	Ч		
16. What is Non Deterministic Finite Automaton?	REMEMBER	C01	PI
	BT - L1		1.4.3
The finite automata is called Non Deterministic Fi	nite Automaton(usually der	noted a
NFA) if there exists more transitions for a specifi	c input from cur	rrent state	to nex
state.NFA additionally have an epsilon(ϵ) transition	on.(i.e)transition	from one	state t
another without reading input symbol.			
Ex:			
b	\wedge^{a}		
a,b			
→(q0)	(q1)		
17. What is the principle of mathematica induction?		CO1	PI
	BT - L1		1.4.2
Let $P(n)$ be a statement about a non negative	integer in The	r the prin	cipic c
mathematical induction is that P(n) follows from			
• P(1) and			
() unu			
 P(n-1) implies P(n) for all n>1. 			
• P(n-1) implies P(n) for all n>1.	i) is called the inc	luctive ster	э. Р(n-1
 P(n-1) implies P(n) for all n>1. Condition(i) is called the basis step and condition (i) 	i) is called the inc	luctive step	o. P(n-1
• P(n-1) implies P(n) for all n>1.	i) is called the inc	luctive step	p. P(n-1
 P(n-1) implies P(n) for all n>1. Condition(i) is called the basis step and condition (i is called the induction hypothesis. 	-		PI
 P(n-1) implies P(n) for all n>1. Condition(i) is called the basis step and condition (is called the induction hypothesis. 18. What are the properties of transition function? 	REMEMBER		PI
 P(n-1) implies P(n) for all n>1. Condition(i) is called the basis step and condition (is called the induction hypothesis. 18. What are the properties of transition function? The properties of transition function are as follows: 	REMEMBER		PI
 P(n-1) implies P(n) for all n>1. Condition(i) is called the basis step and condition (it is called the induction hypothesis. 18. What are the properties of transition function? The properties of transition function are as follows: δ (q, ε)=q 	REMEMBER BT - L1	C01	PI 1.4.2
 P(n-1) implies P(n) for all n>1. Condition(i) is called the basis step and condition (it is called the induction hypothesis. 18. What are the properties of transition function? The properties of transition function are as follows: δ (q, ε)=q For all strings w and input symbol a Δ(q, aw)= į(į 	REMEMBER BT - L1 (q.a), w) Δ(q, wa)	CO1 = į(į(q, w).	PI 1.4.2
 P(n-1) implies P(n) for all n>1. Condition(i) is called the basis step and condition (it is called the induction hypothesis. 18. What are the properties of transition function? The properties of transition function are as follows: δ (q, ε)=q For all strings w and input symbol a Δ(q, aw)= į(į The transition function δ can be extended that operation. 	REMEMBER BT - L1 (q.a), w) Δ(q, wa) perates on states a	CO1 = į(į(q, w).	PI 1.4.2 a)
 P(n-1) implies P(n) for all n>1. Condition(i) is called the basis step and condition (it is called the induction hypothesis. 18. What are the properties of transition function? The properties of transition function are as follows: δ (q, ε)=q For all strings w and input symbol a Δ(q, aw)= į(į 	REMEMBER BT - L1 (q.a), w) Δ(q, wa)	CO1 = į(į(q, w).	PI 1.4.2 a) PI
 P(n-1) implies P(n) for all n>1. Condition(i) is called the basis step and condition (it is called the induction hypothesis. 18. What are the properties of transition function? The properties of transition function are as follows: δ (q, ε)=q For all strings w and input symbol a Δ(q, aw)= į(į The transition function δ can be extended that op 19. What is meant by inductive proof? 	REMEMBER BT - L1 (q.a), w) Δ(q, wa) perates on states a REMEMBER BT - L1	CO1 = į(į(q, w).and strings CO1	PI 1.4.2 a) PI 1.4.2
 P(n-1) implies P(n) for all n>1. Condition(i) is called the basis step and condition (it is called the induction hypothesis. 18. What are the properties of transition function? The properties of transition function are as follows: δ (q, ε)=q For all strings w and input symbol a Δ(q, aw)= į(į The transition function δ can be extended that op 19. What is meant by inductive proof? 	REMEMBER BT - L1 (q.a), w) Δ(q, wa) perates on states a REMEMBER BT - L1	CO1 = į(į(q, w).and strings CO1	PI 1.4.2 a) PI 1.4.2
 P(n-1) implies P(n) for all n>1. Condition(i) is called the basis step and condition (it is called the induction hypothesis. 18. What are the properties of transition function? The properties of transition function are as follows: δ (q, ε)=q For all strings w and input symbol a Δ(q, aw)= į(į The transition function δ can be extended that op 19. What is meant by inductive proof? The inductive proof is used to define the objects recut. Basis step-prove the statement for lowest value. 	REMEMBER BT - L1 $(q.a), w) \Delta(q, wa)$ perates on states a REMEMBER BT - L1rsively. This follow	CO1 = į(į(q, w).and strings CO1	PI 1.4.2 a) PI 1.4.2
 P(n-1) implies P(n) for all n>1. Condition(i) is called the basis step and condition (it is called the induction hypothesis. 18. What are the properties of transition function? The properties of transition function are as follows: δ (q, ε)=q For all strings w and input symbol a Δ(q, aw)= į(į The transition function δ can be extended that op 19. What is meant by inductive proof? The inductive proof is used to define the objects recut Basis step-prove the statement for lowest value. Induction Hypothesis-assume the statement is tr 	REMEMBER BT - L1 $(q.a), w) \Delta(q, wa)$ berates on states a REMEMBER BT - L1rsively. This follow ue for value K.	CO1 = į(į(q, w).and strings CO1	PI 1.4.2 a) PI 1.4.2
 P(n-1) implies P(n) for all n>1. Condition(i) is called the basis step and condition (it is called the induction hypothesis. 18. What are the properties of transition function? The properties of transition function are as follows: δ (q, ε)=q For all strings w and input symbol a Δ(q, aw)= i(i The transition function δ can be extended that op 19. What is meant by inductive proof? The inductive proof is used to define the objects recut Basis step-prove the statement for lowest value. Induction Hypothesis-assume the statement is true for the 	REMEMBER BT - L1 (q.a), w) Δ(q, wa) perates on states a REMEMBER BT - L1 rsively. This follow ue for value K. e value k+1.	CO1 = į(į(q, w). and strings CO1 ws 3 steps	PI 1.4.2 a) PI 1.4.2
 P(n-1) implies P(n) for all n>1. Condition(i) is called the basis step and condition (it is called the induction hypothesis. 18. What are the properties of transition function? The properties of transition function are as follows: δ (q, ε)=q For all strings w and input symbol a Δ(q, aw)= į(į The transition function δ can be extended that op 19. What is meant by inductive proof? The inductive proof is used to define the objects recut Basis step-prove the statement for lowest value. Induction Hypothesis-assume the statement is tr 	REMEMBER BT - L1 (q.a), w) Δ(q, wa) perates on states a REMEMBER BT - L1 csively. This follow ue for value K. e value k+1. REMEMBER REMEMBER	CO1 = į(į(q, w).and strings CO1	PI 1.4.2 a) PI 1.4.2 : PI
 P(n-1) implies P(n) for all n>1. Condition(i) is called the basis step and condition (it is called the induction hypothesis. 18. What are the properties of transition function? The properties of transition function are as follows: δ (q, ε)=q For all strings w and input symbol a Δ(q, aw)= į(į The transition function δ can be extended that op 19. What is meant by inductive proof? The inductive proof is used to define the objects recute Basis step-prove the statement for lowest value. Induction Hypothesis-assume the statement is true Inductive step-prove the statement is true for the 	REMEMBER BT - L1 (q.a), w) Δ(q, wa) berates on states a REMEMBER BT - L1 rsively. This follow ue for value K. e value k+1. REMEMBER BT - L1	CO1 = į(į(q, w). and strings CO1 ws 3 steps = CO1	PI 1.4.2 a) PI 1.4.2 : PI 1.4.2
 P(n-1) implies P(n) for all n>1. Condition(i) is called the basis step and condition (it is called the induction hypothesis. 18. What are the properties of transition function? The properties of transition function are as follows: δ (q, ε)=q For all strings w and input symbol a Δ(q, aw)= į(į The transition function δ can be extended that op 19. What is meant by inductive proof? The inductive proof is used to define the objects recut Basis step-prove the statement for lowest value. Induction Hypothesis-assume the statement is true for the 20. What is meant by proof by contrapositive? 	REMEMBER BT - L1 $(q.a), w) \Delta(q, wa)$ perates on states a merates on states a BT - L1resively. This follow ue for value K. e value k+1.REMEMBER BT - L1REMEMBER BT - L1BT - L1s If not C then no	CO1 = į(į(q, w). and strings CO1 ws 3 steps = CO1 ot H ". A st	PI 1.4.2 a) PI 1.4.2 : :
 P(n-1) implies P(n) for all n>1. Condition(i) is called the basis step and condition (it is called the induction hypothesis. 18. What are the properties of transition function? The properties of transition function are as follows: δ (q, ε)=q For all strings w and input symbol a Δ(q, aw)= i(i The transition function δ can be extended that op 19. What is meant by inductive proof? The inductive proof is used to define the objects recut Basis step-prove the statement for lowest value. Induction Hypothesis-assume the statement is true Inductive step-prove the statement is true for the 20. What is meant by proof by contrapositive? 	REMEMBER BT - L1 $(q.a), w) \Delta(q, wa)$ berates on states a merates on states a REMEMBER BT - L1rsively. This follow ue for value K. e value k+1.REMEMBER BT - L1REMEMBER BT - L1s If not C then no calse, so it can pro-	CO1 = į(į(q, w).a and strings CO1 ws 3 steps CO1 t H ". A st ove either	PI 1.4.2 a) PI 1.4.2 :
 P(n-1) implies P(n) for all n>1. Condition(i) is called the basis step and condition (it is called the induction hypothesis. 18. What are the properties of transition function? The properties of transition function are as follows: δ (q, ε)=q For all strings w and input symbol a Δ(q, aw)= i(i The transition function δ can be extended that op 19. What is meant by inductive proof? The inductive proof is used to define the objects recut Basis step-prove the statement for lowest value. Induction Hypothesis-assume the statement is tri Inductive step-prove the statement is true for the 20. What is meant by proof by contrapositive? The contrapositive of the statement " if H then C " i and its contrapositive are either both true or both for the other. A statement and its contrapositive are log 	REMEMBER BT - L1 $(q.a), w) \Delta(q, wa)$ berates on states a merates on states a REMEMBER BT - L1rsively. This follow ue for value K. e value k+1.REMEMBER BT - L1REMEMBER BT - L1s If not C then no calse, so it can pro-	CO1 = į(į(q, w).a and strings CO1 ws 3 steps CO1 t H ". A st ove either	PI 1.4.2 a) PI 1.4.2 :
 P(n-1) implies P(n) for all n>1. Condition(i) is called the basis step and condition (i is called the induction hypothesis. 18. What are the properties of transition function? The properties of transition function are as follows: δ (q, ε)=q For all strings w and input symbol a Δ(q, aw)= į(į The transition function δ can be extended that op 19. What is meant by inductive proof? The inductive proof is used to define the objects recut Basis step-prove the statement for lowest value. Induction Hypothesis-assume the statement is tr Inductive step-prove the statement is true for the 20. What is meant by proof by contrapositive? The contrapositive of the statement " if H then C " i and its contrapositive are either both true or both f the other. A statement and its contrapositive are log true, then its contrapositive is true, and vice versa. 	REMEMBER BT - L1 $(q.a), w) \Delta(q, wa)$ berates on states a merates on states a REMEMBER BT - L1 rsively. This follow ue for value K. e value k+1.rsively. This follow alse, so it can pro- false, so it can pro- fically equivalent:	CO1 = į(į(q, w).a and strings CO1 ws 3 steps CO1 t H ". A st ove either i f the state	PI 1.4.2 a) PI 1.4.2 : PI 1.4.2 : :
 P(n-1) implies P(n) for all n>1. Condition(i) is called the basis step and condition (it is called the induction hypothesis. 18. What are the properties of transition function? The properties of transition function are as follows: δ (q, ε)=q For all strings w and input symbol a Δ(q, aw)= i(i The transition function δ can be extended that op 19. What is meant by inductive proof? The inductive proof is used to define the objects recut Basis step-prove the statement for lowest value. Induction Hypothesis-assume the statement is tri Inductive step-prove the statement is true for the 20. What is meant by proof by contrapositive? The contrapositive of the statement " if H then C " i and its contrapositive are either both true or both for the other. A statement and its contrapositive are log 	REMEMBER BT - L1 $(q.a), w) \Delta(q, wa)$ perates on states a REMEMBER BT - L1rsively. This follow ue for value K. e value k+1.REMEMBER BT - L1REMEMBER BT - L1s If not C then no false, so it can pro- fically equivalent:REMEMBER fically equivalent:	CO1 = į(į(q, w).a and strings CO1 ws 3 steps CO1 t H ". A st ove either	PI 1.4.2 a) PI 1.4.2 : PI 1.4.2 catement to prov ement i PI
 P(n-1) implies P(n) for all n>1. Condition(i) is called the basis step and condition (i is called the induction hypothesis. 18. What are the properties of transition function? The properties of transition function are as follows: δ (q, ε)=q For all strings w and input symbol a Δ(q, aw)= į(į The transition function δ can be extended that op 19. What is meant by inductive proof? The inductive proof is used to define the objects recut Basis step-prove the statement for lowest value. Induction Hypothesis-assume the statement is tr Inductive step-prove the statement is true for the 20. What is meant by proof by contrapositive? The contrapositive of the statement " if H then C " i and its contrapositive are either both true or both f the other. A statement and its contrapositive are log true, then its contrapositive is true, and vice versa. 	REMEMBER BT - L1 $(q.a), w) \Delta(q, wa)$ berates on states a merates on states a REMEMBER BT - L1 rsively. This follow ue for value K. e value k+1.rsively. This follow alse, so it can pro- false, so it can pro- fically equivalent:	CO1 = į(į(q, w).a and strings CO1 ws 3 steps CO1 t H ". A st ove either i f the state	PI 1.4.2 a) PI 1.4.2 : PI 1.4.2 : :

	A switching circuit consists of a finite number of g of the two conditions 0 or 1. Although the voltage electronic circuitry is designed so that the voltage and all others adjust to these values. Thus contro- system. Construct DFA over Σ =(a,b) which produces r more than 3a's. a,b	ges a es co ol ur	assume infinite orresponding t nit of a comput APPLY BT - L3	e set of value o 0 or 1 are	ues, the e stable	
	of the two conditions 0 or 1. Although the voltage electronic circuitry is designed so that the voltage and all others adjust to these values. Thus contro- system. Construct DFA over Σ =(a,b) which produces r	ges a es co ol ur	assume infinite orresponding t nit of a compu- APPLY	e set of valu o 0 or 1 ard ter is a fini	ues, the e stable te state PI	
	of the two conditions 0 or 1. Although the voltage electronic circuitry is designed so that the voltage and all others adjust to these values. Thus contro- system.	ges a es co ol ur	assume infinite orresponding t nit of a compu	e set of valu o 0 or 1 ard ter is a fini	ues, the e stable te state	
	of the two conditions 0 or 1. Although the voltage electronic circuitry is designed so that the voltage	ges a es co	assume infinite orresponding t	e set of value o 0 or 1 are	ues, the e stable	
A	of the two conditions 0 or 1. Although the voltage	ges a	assume infinite	e set of val	ues, the	
Ē					-	
	A switching circuit consists of a finite number of gates, each of which can be in any one					
Z J.	state systems?		BT - L2	, .	1.4.3	
25	Why switching circuits are called as finite	UN	DERSTAND	C01	PI	
	=>aΛb≠Φ => aΛc=Φ (i.e., the assumption is wrong)					
	Then there exists x, xEa and xEc =>xEb					
	Assume: aΛc≠Φ					
	out 2 is even. For any sets a,b,c if aΛb=Φ and c is a s Given: aΛb=Φ and c subset of b	subs	et of b then pro	ove that and	=Ψ.	
	The problem can be solved by Proof by Contradic			-	-	
			BT - L2		2.4.4	
24.	Justify " All primes are odd"	UN	DERSTAND	C01	PI	
	hat such an assumption leads to a contradiction.				1	
	a proposition by first assuming that the opposite				•	
I	n logic, proof by contradiction is a form of proof t	hat e		truth or va		
23.	what is meant by proof by contradiction?		REMEMBER BT - L1	COT	1.4.2	
22	= > impliesWhat is meant by proof by contradiction?		REMEMBER	CO1	PI	
	• ' – compliment					
•	• 7- negation					
•	• Φ – NULL set					
	ε - Empty String					
•	U – Union					
	······································		BT - L1	001	1.4.1	
	• Demorgan's Law: $(AUB)^{} = A^{} \cap B^{}$, $(A \cap B)^{} = A^{}$ What are the basic symbols used in the proof?		REMEMBER	C01	PI	
22.	\bullet Demonvants Law Lamber = \bullet the tame = \bullet	II R`				

<u> PART – B</u>

1.	Prove that for every L recognized by an NFA,	(AU ND-	UNDERSTAND	C01	PI
	there exists an equivalent DFA accepting the	2020)	BT - L2		2.4.4
	same language L (13)				
2.	Prove that for every L recognized by an \in -NFA,	(AU ND-	UNDERSTAND	CO1	PI
	there exists an equivalent DFA accepting the	2020)	BT - L2		2.4.4
	same language L (13)				

	Subje	<u>ct Code / Nar</u>	ne: CS8501 / Theory	v of Comp	utatio
3.	Construct a Deterministic Finite Automata	(AU ND-	APPLY	CO1	PI
	equivalent to the NFA M=({p,q,r,s},{0,1}, δ	2019)	BT - L3		3.2.3
	p,{s}) where δ is given by (13)				
	δ 0 1				
	p {p,q} {p}				
	q {r} {r}				
	r {s} -				
	S {S} {S}				
4.	Give NFA accepting the set of strings in (0+1)*	(AU ND –	APPLY	CO1	PI
	such that two 0's are separated by a string	2019)	BT - L3		3.2.
	whose length is 4i, for some $i \ge 0$ (13)	-			
5.	Convert the ϵ -NFA to DFA and list the difference	hetween	APPLY	C01	PI
5.	NFA and DFA	(13)	BT - L3	COI	3.2.
		(13)	DI - LS		3.2.
	b				
	X Q)				
	Start q_0 a q_1 c q_2				
6.	Prove that for every n>=1 by mathematical induc		UNDERSTAND	CO1	PI
	$= {n(n+1)/2}^2$	(7)	BT - L2		2.1.
7.	(i) Given $\sum = \{a,b\}$, construct a DFA which recogn	ize the	APPLY	CO1	PI
	languageL={ $b^m a b^n$: m, n>0}	(6)	BT - L3		3.2.
	(ii)Determine the DFA from a given NFA				
	$M = (\{q_0, q_1\}, \{a, b\}, \delta, q_0, \{q_1\})$ with the state table of	diagram			
	for δ given below.	(7)			
	δα b				
	$q_0 \{q_0, q_1\} \{q_1\}$				
	$q_1 \emptyset \{q_0, q_1\}$				1
8.	Discuss the basic approach to convert from NFA	to Regular	UNDERSTAND	001	PI
	expression. Illustrate with an example.	(13)	BT - L2	CO1	3.2.
					1
9.	Prove that if $x \ge 4$ then $2^x \ge x^2$	(7)	UNDERSTAND		PI
9.	Prove that if $x \ge 4$ then $2^x \ge x^2$	(7)	UNDERSTAND BT - L2	CO1	
-			BT - L2	CO1	2.1.
-	Prove that if x>=4 then 2 ^x >= x ² . Prove that every tree has 'e' edges and 'e+1' node		BT - L2 UNDERSTAND	CO1	2.1. PI
10.	. Prove that every tree has 'e' edges and 'e+1' node	es. (6)	BT - L2 UNDERSTAND BT - L2		2.1. PI 2.1.
10.	 Prove that every tree has 'e' edges and 'e+1' node Prove the equivalence of NFA and DFA using 	es. (6) ing subset	BT - L2 UNDERSTAND BT - L2 UNDERSTAND		2.1. PI 2.1. PI
10. 11.	 Prove that every tree has 'e' edges and 'e+1' node Prove the equivalence of NFA and DFA usi construction. 	es. (6) ing subset (7)	BT - L2 UNDERSTAND BT - L2 UNDERSTAND BT - L2	C01 C01	2.1. PI 2.1. PI 3.2.
10. 11.	 Prove that every tree has 'e' edges and 'e+1' node Prove the equivalence of NFA and DFA usi construction. Convert the following NFA to a DFA. 	es. (6) ing subset	BT - L2 UNDERSTAND BT - L2 UNDERSTAND BT - L2 APPLY	CO1	2.1. PI 2.1. PI 3.2. PI
10. 11.	 Prove that every tree has 'e' edges and 'e+1' node Prove the equivalence of NFA and DFA usi construction. 	es. (6) ing subset (7)	BT - L2 UNDERSTAND BT - L2 UNDERSTAND BT - L2	C01 C01	2.1. PI 2.1. PI 3.2. PI
10. 11.	 Prove that every tree has 'e' edges and 'e+1' node Prove the equivalence of NFA and DFA usi construction. Convert the following NFA to a DFA. 	es. (6) ing subset (7)	BT - L2 UNDERSTAND BT - L2 UNDERSTAND BT - L2 APPLY	C01 C01	2.1. PI 2.1. PI 3.2. PI
10. 11.	 Prove that every tree has 'e' edges and 'e+1' node Prove the equivalence of NFA and DFA usi construction. Convert the following NFA to a DFA. δ a b 	es. (6) ing subset (7)	BT - L2 UNDERSTAND BT - L2 UNDERSTAND BT - L2 APPLY	C01 C01	2.1. PI 2.1. PI 3.2. PI
10. 11.	 Prove that every tree has 'e' edges and 'e+1' node Prove the equivalence of NFA and DFA usi construction. Convert the following NFA to a DFA. δ a b →p {p} {p} {p,q} 	es. (6) ing subset (7)	BT - L2 UNDERSTAND BT - L2 UNDERSTAND BT - L2 APPLY	C01 C01	2.1. PI 2.1. PI 3.2. PI
10. 11. 12.	Prove that every tree has 'e' edges and 'e+1' node Prove the equivalence of NFA and DFA usi construction. Convert the following NFA to a DFA. δ a b \rightarrow p {p} {p} {p,q} q {r} {r} {r}	es. (6) ing subset (7) (13)	BT - L2 UNDERSTAND BT - L2 UNDERSTAND BT - L2 APPLY	C01 C01	PI 2.1. PI 2.1. PI 3.2. PI 3.2. PI

	Subject Co	ode / Nai	<u>ne: CS8501 / Theor</u>	y of Comp	utation		
14.	Prove that for every integer $n \ge 0$ the number 4^{2n+1} .	⊦3 ⁿ⁺² is	UNDERSTAND	C01	PI		
	a multiple of 3.	(7)	BT - L2	COI	2.1.3		
15.	(i) Prove the following by the principle of induction	(7)	UNDERSTAND	C01	PI		
	n		BT - L2		2.1.3		
	$\sum_{k=1}^{\sum k^2 = n(n+1)(2n+1)} \frac{n(n+1)(2n+1)}{6}$						
	k=1 6						
	(ii) Construct a DFA that accepts all strings or	n {0,1}					
	containing the substring 101.	(6)					
16.	(i) Construct a non-deterministic finite auto	maton	APPLY	CO1	PI		
	accepting the set of strings over {a,b} ending in aba	. Use it	BT - L3		3.2.1		
	to construct a DFA accepting the some set of strings.	(7)					
	(ii) Construct NFA with ε -moves which accepts a lat	nguage					
	consisting the strings of any number of a's, followed	by any					
	number c's.	(6)					
17.	Consider the following ϵ -NFA for an identifier. Consider	der the	APPLY	CO1	PI		
	letter $\epsilon\text{-closure}$ of each state and find it's equivalent		BT - L3		3.2.1		
	Deterministic Finite Automata.	(13)					
	letter. 1 1 2 3 4 5 1 1 5 6 5 7 5 6 5 7 6 5 7 6 5 6 5 7 7 6 5 6 6 7 7 7 8 6 8 7 7 8 8 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8						
	<u>UNIT II</u> <u>REGULAR EXPRESSIONS & LANGUAGES</u> <u>PART – A</u>						

1.	Write the regular expression for all	(AU – ND	APPLY	C01	PI	
	strings that contain no more than one	2020)	BT - L3		3.2.1	
	occurrence of aa.					
	Regular expression:					
	When aa in first position : aa (ba bb b)*					
	When aa in middle position: (ab bb b)*aa(ba bb b)*					
	When aa in last position:(ab bb b)*aa					
	The final output is: aa(ba bb b)* + (ab bb	b)*aa(ba bb b)*	[*] + (ab bb b)*aa	a		
2.	Write a regular expression for even	(AU – ND	APPLY	C01	PI	
	number of a's and even number of b's	2020)	BT - L3		3.2.1	
	of a string w = {a, b}*					
	Regular Expression:					
	Even Number of a's: (aa)*					
	Even Number of b's: (bb)*					
	The final output is: (aa)*(bb)*					

	Union is commutative						
	Union is idempotent						
26.	What is a bad pair?	REMEMBER	C01	PI			
		BT - L1		1.4.1			
	A pair (p,q) is called as a bad pair if						
	• States p and q are distinguishable such that there is some string w where one of $\delta(p,w)$						
	and $\delta(q,w)$ is accepting. The table filling algorithm does not find p and q to be						

distinguished.

PART	<u>– B</u>

1.	Prove that the following languages are not regular	(AU ND	UNDERSTAND	C01	PI
	using pumping lemma.	- 2020)	BT - L2		2.4.4
	i) All unary strings of length prime. (7)				
	ii) $L = \{uu u \in \{0, 1\}^*\}.$ (6)				
2.	State and Prove any two closure properties of	(AU ND	REMEMBER	C01	PI
	Regular Languages (13)	- 2020)	BT - L1		2.4.4
3.	(i).Prove that any language accepted by a	(AU ND	UNDERSTAND	CO1	PI
	Deterministic Finite Automata can be represented	- 2019)	BT - L2		2.4.4
	by a regular expression (7)				
	(ii). Construct a FA for the regular expression 10 +				
	(0+11)0*1. (6)				
4.	Prove that the following languages are not regular:	(AU ND	UNDERSTAND	C01	PI
	(i). $\{w \in \{a,b\}^* \mid w=w^R\}$ (7)	-2019)	BT - L2		2.4.4
	(ii). Set of strings of 0's and 1's beginning with a 1				
	whose value treated as a binary number is a				
	prime. (6)				
5.	Show that the regular language are closed under:	(13)	UNDERSTAND	C01	PI
	a. Union		BT - L2		2.4.4
	b. Intersection				
	c. Kleene Closure				
	d. Difference				
6.	Design a finite automaton for the regular expression	l	APPLY	CO1	PI
	(0+1)*(00+11)(0+1*)	(13)	BT - L3		3.2.1
7.	Prove that the class of regular sets is close	ed under	UNDERSTAND	CO1	PI
	complementation.	(7)	BT - L2		2.4.4
8.	Convert the following NFA into regular expression.	(13)	APPLY	CO1	PI
	_0,1		BT - L3		3.2.1
		<u> </u>			
	$ (Q) \rightarrow (Q)$	3) 0,1			
9.	State the pumping lemma for Regular languages. S.T	the set	REMEMBER	C01	PI
	$L=\{0^{i2} i \ge 1\}$ is not regular	(7)	BT - L1		2.4.4
10.	Prove that $L=\{0^{2n}\}n>=1\}$ is not regular	(6)	UNDERSTAND	C01	PI
			BT - L2		2.4.4
				1	

	Subject Code / Name: CS8501 / Theory of Computation					
11.	Give DFA accepting the following languages over the	UNDERSTAND	CO1	PI		
	alphabet {0,1}, the set of all strings ending in 00 and	BT - L2		3.2.1		
	minimize the Deterministic Finite Automata. (13)					
12.	Let r be a regular expression. Then prove that there exists an	UNDERSTAND	CO1	PI		
	NFA with ε -transitions that accepts L(r). (13)	BT - L2		2.4.4		
13.	Construct an NFA equivalent to the regular expression	APPLY	CO1	PI		
	((0+1)(0+1)(0+1))* (13)	BT - L3		3.2.1		
14.	Show that $(r^*)^* = r^*$ for a regular expression (6)	UNDERSTAND	CO1	PI		
		BT - L2		2.4.4		
15.	S.T the set L= 0^{n2} n is an integer and n>=1 is not regular	UNDERSTAND	CO1	PI		
	language (7)	BT - L2		2.4.4		
16.	Construct a regular expression corresponding to the state	APPLY	CO1	PI		
	diagram (13)	BT - L3		3.2.1		
17.	Describe Arden's theorem with an example (7)	UNDERSTAND	CO1	PI		
		BT - L2		2.2.3		

<u> PART – C</u>

1.	Construct NFA with epsilon for the RE=(a b)*ab and convert	APPLY	C01	PI
	into DFA and further find the minimized DFA (15)	BT - L3		3.2.1
2.	Construct a minimized DFA for the regular expression(0+1)*	APPLY	C01	PI
	(00+11)(0+1)* (15)	BT - L3		3.2.1

UNIT III CONTEXT FREE GRAMMAR AND LANGUAGES PART – A

	<u>PART – A</u>							
1.	Write a Context Free Grammar for the	(AU ND	APPLY	CO2	PI			
	language consisting of equal number of a's	- 2020)	BT - L3		3.2.1			
	and b's							
	First possibility, S→01 10							
	If length >1 then							
	S→0S1 1S0							
	Therefore, Context Free Grammar for the language	ge consisting	g of equal numbe	r of a's an	d b's			
	S→01 10 0S1 1S0							
2.	Define Deterministic PDA	(AU ND	REMEMBER	CO2	PI			
		- 2020)	BT - L1		1.4.1			
	A PDA M = ($Q, \Sigma, \Gamma, \delta, q_0, Z_0, F$) is deterministic if:							
	• For each q in Q and Z in Γ , whenever $\delta(q, \varepsilon, \varepsilon)$	Z) is nonem	pty then $\delta(q,a,Z)$	2) is empt	ty for			
	all a in Σ .							

		<u>e: CS8501 / Theor</u>		
• For no q in Q, Z in Γ , and a in $\Sigma \cup \{ E \}$ does $\delta(c)$	ą,a,Z) conta	ins more than on	e elemen	t.
Ex: The PDA accepting $\{wcw R \mid w in (0+1)^*\}$.		T		1
When do you say a grammar is ambiguous?	•		CO2	PI
	,			1.4.1
	input string	is derived from	more thai	n one
•				
		g w in T* is havi	ng two d	ifferen
	•		CO2	PI
	,			1.4.
	2 , 3, 0, q 0, 1,	r) –		
-				
-	0 0*			
	Q×S*			
What is meant by Context Free Grammar(CFG)	?		CO 2	PI
	c			1.4.3
	-	nents such as G=([V,T,P,S]	
	erminals			
-				
-	6.1 6			
	s of the forn	1		
		_		
			<u> </u>	PI
	extrree		02	3.2.
		DI - LS		3.2.
L 3				
L 3	rammar.			
		APPLY	CO2	PI
	0		001	3.2.2
	e as follow			0
$S1 \rightarrow + -$				
$N1 \rightarrow D1D2$				
$D1 \rightarrow 1 2 3 4 5 6 7 8 9$				
D1 → 1 2 3 4 5 6 7 8 9 D2 → 0 ε				
D1 → 1 2 3 4 5 6 7 8 9 D2 → 0 ε				
	When do you say a grammar is ambiguous?A grammar is said to be ambiguous when a same parse trees or derivations.A CFG G=(V,T,P,S) is ambiguous if there is atleas parse trees ,each with the same root S and same parse trees ,each with the same root S and same of the same root S and same same root S and same same root and same same root and same same root S and same same same root S and same same same root S and same same same same root S and same same same same same root S and same same same root S and same same same same same same root S and same same same same same same same same	When do you say a grammar is ambiguous?(AU ND - 2019)A grammar is said to be ambiguous when a same input string parse trees or derivations.A CFG G=(V,T,P,S) is ambiguous if there is atleast one string parse trees ,each with the same root S and same yield w.Give a formal definition of Push Down Automata?(AU ND - 2019)A PDA can be formally described as a 7-tuple (Q, Σ , S, δ , q_0 , I,Q is the finite number of states• Σ is input alphabetS is stack symbols• δ is the transition function: $Q \times (\Sigma \cup \{\epsilon\}) \times S \times Q \times S^*$ • q_0 is the initial state ($q_0 \in Q$)• I is the initial stack top symbol (I \in S)• F is a set of accepting states (F $\in Q$)What is meant by Context Free Grammar (CFG)?Context Free Grammar is a grammar which have four compore• A finite set of symbols called terminals T.• S $\subseteq V$ is the start symbol or variable.• A finite set of productions (P) or rules which is of the form $A -> \alpha$, Where $A -$ variable $\alpha -$ string of zero or more terminals and string:• Derive a string 'aababa' for the following Context Free Grammar (CFG) S \Rightarrow aSX $= >aabXX$ $= >aabXX$ $= >aabXX$ $= >aababX$ $[X \rightarrow A]$ $= >aababX$ $[X \rightarrow A]$ Thus the given string is derived from the above grammar.Generate CFG for a signed integer constant in C languageThe CFG for a signed integer constant in C language as follow	When do you say a grammar is ambiguous?(AU ND - 2019)UNDERSTAND BT - L2A grammar is said to be ambiguous when a same input string is derived from t parse trees or derivations.BT - L2A CFG G=(V,T,P,S) is ambiguous if there is atleast one string win T* is have parse trees, each with the same root S and same yield w.Win T* is have parse trees, each with the same root S and same yield w.Give a formal definition of Push Down Automata?(AU ND - 2019)REMEMBER BT - L1A PDA can be formally described as a 7-tuple (Q, Σ , S, δ , qo, I, F) -Q is the finite number of statesBT - L1A PDA can be formally described as a 7-tuple (Q, Σ , S, δ , qo, I, F) -Q is the finite number of statesBT - L1A pDA can be formally described as a 7-tuple (Q, Σ , S, δ , qo, I, F) -Q is the initial state (qo \in Q)ET and the state state of production: Q × ($\Sigma \cup \{\epsilon\}$) × S × Q × S*Go of the initial state (qo \in Q)I is the initial stack top symbol (I \in S)F is a set of accepting states (F \in Q)REMEMBER BT - L1Context Free Grammar is a grammar which have four components such as G=0A finite set of variables 'V' also called as non terminalsA finite set of symbols called terminals T.S \subseteq V is the start symbol or variable.A finite set of productions (P) or rules which is of the form A -> α , Where A - variable $\alpha - string of zero or more terminals and stringsDerive a string 'aababa' for the following Context FreeGrammar (CFG) S > aSX = > aabXXS \geq als X= > aabXX[S \rightarrow als X = > aabXX[S \rightarrow als X = > aabXX= > aabXX[S \rightarrow al= > aabXX[S $	When do you say a grammar is ambiguous?(AU ND - 2019)UNDERSTAND BT - L2CO2A grammar is said to be ambiguous when a same input string is derived from more that parse trees or derivations.A CFG G=(V,T,P,S) is ambiguous if there is atleast one string win T* is having two d parse trees, each with the same root S and same yield w.With the same root S and same yield w.CO2Give a formal definition of Push Down Automata?(AU ND - 2019)REMEMBER BT - L1CO2A PDA can be formally described as a 7-tuple (Q, \sum , S, δ , q_0 , I, F) -Q is the finite number of statesS is stack symbolsS is stack symbolsS is is the transition function: Q × ($\sum \cup \{\epsilon\}$) × S × Q × S*CO2S is stack symbolsS is stack symbolsS is stack top symbol (I \in S)F is a set of accepting states (F \in Q)REMEMBER BT - L1CO2What is meant by Context Free Grammar is a grammar which have four components such as G=(V,T,P,S)A finite set of variables 'V' also called as non terminalsA finite set of symbols called terminals T.S \subseteq V is the start symbol or variable.A finite set of productions (P) or rules which is of the form A -> α , Where A - variable $\alpha - string 'aababa' for the following Context FreeGrammar (CFG) S \rightarrow aSX= >aabXX [S \rightarrow b]= >aabXX [S \rightarrow b]$

	Subject Code / N	<u>ame: CS8501 / The</u>	ory of Comp	outation
	• If $L = N(M1)$ for some PDA M1 , then $L = L(M2)$ for so	ome PDA M2		
	where L(M) = language accepted by PDA by reaching a	final state.		
	N(M) = language accepted by PDA by empty sta	ck.		
26.	Construct a PDA that accepts the language generate	ed APPLY	CO2	PI
	by the grammar. $S \rightarrow aABB, A \rightarrow aB \mid a, B \rightarrow bA \mid b$	BT - L3		3.2.2
	The PDA is given by			
	A = ({q}, {a,b}, {S, A, B, Z, a, b}, δ , q, S}			
	where $\delta : \delta(q, z, S) = \{(q, aABB)\}$			
	$\delta(q, z, A) = \{(q, aB), (q, a)\}$			
	$\delta(q, z, B) = \{(q, bA), (q, b)\}$			
	$\delta(\mathbf{q}, \mathbf{a}, \mathbf{a}) = \{(\mathbf{q}, \varepsilon)\}$			
	$\delta(q, b, b) = \{(q, \varepsilon)\}$			T
27.	Is PDA superior over NFA in the sense of language	REMEMBER	CO2	PI
	acceptance? Justify your answer.	BT - L1		1.4.
	 conditions. Two ways of language acceptances, one by reaching its its stack. 	s final state and an	other by er	nptyin
28.	Relate Context free language and DPDA	UNDERSTAND	CO2	PI
		BT - L2		1.4.2
	The languages accepted by the deterministic PDA by final context free language,	state are properly	included in	n the
	• Each context free languages accepted by the DPDA have	ve unambiguous gr	ammar	
	• The DPDA languages are not exactly equal to the subse ambiguous languages	et of the CFL that a	e not inhe	rently
	• So if L=N(P) for some DPDA P, then L has an unambigu	ious CFG		
	 So if L=N(P) for some DPDA P, then L has an unambigu <u>PART – B</u> 	ious CFG		
1.		APPLY	C02	PI

1.	How ∈-productions are eliminated from a	(AU ND	APPLY	CO2	PI
	grammar whose language doesn't have empty	- 2020)	BT - L3		3.2.1
	string ? Remove \in -productions from the				
	grammar given below. (13)				
	$S \rightarrow a aA B CA \rightarrow aB \in B \rightarrow AaC \rightarrow aCD$				
	$D \rightarrow ddd$				
2.	Write procedure to find PDA to CFG. Give an	(AU ND	UNDERSTAND	CO2	PI
	example for PDA and its CFG (13)	- 2020)	BT - L2		3.2.1
3.	Suppose L=L(G) for some CFG G=(V,T,P,S)	(AU ND	UNDERSTAND	CO2	PI
	then prove that L -{ \in } is L(G') for a CFG G' with	- 2019)	BT - L2		2.3.1
	no useless symbols or \in -production (13)				
4.	Prove that the languages accepted by Push	(AU ND	UNDERSTAND	CO2	PI
	Down Automata using empty stack and final	- 2019)	BT - L2		2.3.1
	states are equivalent (13)				
5.	(i). Find PDA that accept the given CFG:	S→xaax,	APPLY	CO2	PI
	X→ax bx ε	(7)	BT - L3		3.2.1
	(ii). Construct PDA for the language a ⁿ b ^m a ^{n+m}	(6)			
6.	(i). Prove that deterministic and non determin	nistic PDA	UNDERSTAND	CO2	PI

	Subject Code	/ Name: CS8501	/ Theory o	f Com	putation	
--	--------------	----------------	------------	-------	----------	--

-	Subject Code / Na	<u>.me: CS8501 / Theo</u>	ory of com	pulation
	are not equivalent (7)	BT - L2		2.3.1
	(ii). Explain pumping lemma for CFL (6)			
7.	(i). Construct a DPDA for even length palindrome. (7)	APPLY	CO2	PI
	(ii). Prove – if PDA P is constructed from CFG G then N(P)	BT - L3		2.3.1
	=L(G) (6)			
8.	Convert the following CFG to PDA and verify for (a+b)	APPLY	CO2	PI
	and a++ (13)	BT - L3		3.2.1
	I→a b Ia Ib I0 I1			
	$E \rightarrow I \mid E + E \mid E^* E \mid (E)$			
9.	Outline an instantaneous description of a PDA. (6)	REMEMBER	CO2	PI
		BT - L1		2.1.2
10.	With an example, explain the procedure to obtain a PDA	UNDERSTAND	CO2	PI
	from the given CFG (13)	BT - L2		2.1.2
11.	Design a PDA to accept $\{0^n1^n n>1\}$. Draw the transition	APPLY	CO2	PI
	diagram for the PDA. Show by instantaneous description	BT - L3		3.2.1
	that the PDA accepts the string '0011' (13)			
12.	(i).Convert PDA to CFG. PDA is given by	APPLY	CO2	PI
	$P=(\{p,q\},\{0,1\},\{X,Z\},\delta,q,Z\}, \delta \text{ is defined by}$	BT - L3		3.2.1
	$\delta(p,1,Z)=(p,XZ)$, $\delta(p, \epsilon,z)=\{(P, \epsilon)\}$, $\delta(p, 1,x)=\{(p,XX)\}$,			
	$\delta(q,1,X) = \{(q, \varepsilon)\}, \delta(p,0,X) = \{(q,X)\}, \delta(q,0,Z) = \{(p,Z)\} $ (8)			
	(ii).What are DPDA? Give example for Non-deterministic			
	and deterministic PDA. (5)			
13.	Construct a pushdown automata to accept the language	APPLY	CO2	PI
	$L=\{a^nb^n/n\geq 1\}$ by empty stack and by final state. (8)	BT - L3		3.2.1
14.	Prove that if L is N(M1)(Language accepted by empty	UNDERSTAND	CO2	PI
	stack) for some PDA M1,then L is N(M2)(Language	BT - L2		2.1.2
	accepted by final state) for some PDA. (13)			
15.	Construct Push Down Automata for the language	APPLY	CO2	PI
	$L=\{ww^{R} w \text{ in } (a+b)^{*}\}.$ (13)	BT - L3		3.2.1
16.	Explain in detail about equivalence of pushdown	REMEMBER	CO2	PI
	automata. (8)	BT - L1		2.1.2
17.	Give formal pushdown automata that accepts { $\omega c \omega^{R} \omega$ is	APPLY	CO2	PI
	in (0+1)*} by empty stack (13)	BT - L3		3.2.1

<u> PART – C</u>

1.	How PDA is converted into CFG ? Convert the	(AU ND	APPLY	CO2	PI
	following PDA into CFG. (15)	- 2020)	BT - L3		3.2.1
	$P = (\{p, q\}, \{0, 1\}, \{Z, X\}, \delta, p, Z, \Phi)$				
	$δ$ (p, 1, Z) = {(p, XZ)}, $δ$ (p, ∈, Z) = {(p,∈)} $δ$ (p, 1, X)				
	= {(p, XX)}, δ (q, 1, X) = {(q, ∈)}, δ (p, 0, X) = {(q,				
	X)}, δ (q, 0, Z) = {(p, Z)}				
2.	(i). Suppose L= N(M) for some PDA M, then prove	(AU ND	APPLY	CO2	PI
	that L is a CFL (7)	- 2019)	BT - L3		2.1.2
	(ii). Give a CFG for the language N(M) where M=				
	$({q_0,q_1},{0,1},{Z_0,X},\delta,q_0,Z_0,q_1)$ and δ is given by,				

	$δ(q_0, 1, Z_0) = {(q_0, XZ_0)} δ(q_0, ε, Z_0) = {(q_0, ε)}$			
	$\delta(q_0,1,X) = \{(q_0,XX)\} \delta(q_1,1,X) = \{(q_1, \epsilon)\}$			
	$\delta(q_0,0,X) = \{(q_1,X)\} \ \delta(q_1,0,Z_0) = \{(q_0,Z_0)\} $ (8)			
3.	(i).Construct the PDA accepting the language $\{(ab)^n n \ge 1\}$ by	APPLY	CO2	PI
	empty stack. (7)	BT - L3		3.2.1
	(ii).Constrcut a transition table for PDA which accepts the			
	language L= $\{a^{2n}b^n n \ge 1\}$. Trace your PDA for the input with			
	n=3. (8)			
4.	Let $M = (\{q_0, q_1\}, \{0, 1\}, \{x, z_0\}, \delta, q_0, z_0, q_1\}$ where δ is given by δ	APPLY	CO2	PI
	$(q_0,0,z_0)=\{(q_0,xz_0)\}, \delta(q_1,1,x)=\{(q_1,\varepsilon)\}, \delta(q_0,0,x)=\{(q_0,xx)\},$	BT - L3		3.2.1
	δ (q ₁ ,ε,x)={(q ₁ ,ε)} δ (q ₁ ,ε,z ₀)={(q ₁ ,ε)} Construct a CFG for the			
	PDA. (15)			

<u>UNIT IV</u>

PROPERTIES OF CONTEXT FREE LANGUAGES

<u> PART – A</u>

1.	What are the two normal forms of CFG ?	(AU ND-	REMEMBER	CO2	PI
1.	Write their productions format.	2020)	BT - L1	002	1.4.1
	The two normal forms of CFG are,	2020)			1.1.1
	Chomsky Normal Form (CNF)				
	• General Format of CNF is $A \rightarrow BC$	а			
	Greibach Normal Form (GNF)	u			
	• General Format of GNF is $A \rightarrow a\alpha$				
2.	Define the language recognized by any	(AU ND-	REMEMBER	CO3	PI
2.	Turing Machine.	2020 /	BT -L1	005	1.4.1
		20207			1.1.1
	The language recognized by a Turing machine is	1	n the set of strin	os it accer	nts
	When an input is given to the machine, it is eith				
	that machine is either always accepted (in the la				
	the language).	inguage) or a	invays not accept	eu (not m	
3.	What are the advantages of having a	(AU ND -	REMEMBER	CO2	PI
0.	normal form for a grammar?	2019)	BT - L1	001	1.4.1
	There are two advantages of having a normal fo	1			
	• Simplicity of proofs - There are plenty of pr	-		nmars. in	cluding
	reducibility and equivalence to automata. Th		-		-
	set of grammars				
	• Enables parsing - Normal forms can give us	more struct	ure to work with	resulting	in
	easier parsing algorithms.				
4.	What are the closure properties of context	free	REMEMBER	CO2	PI
	languages?		BT - L1		1.4.1
	The closure properties of CFL are		I	1	1
	• Context free languages are closed under univ	on.			
	• Context free languages are closed under con				
	Context free languages are closed under klee				
	 Context free languages are not closed under 				

		<u>ame: CS8501 / Theor</u>		
5.	Write down the theorem for pumping lemma for CFL		CO2	PI
		BT - L1		1.4
	Let 'L' be a CFL. Then there exists a constant 'n' such that if		' such tha	t Z i
	atleast n, then we can write Z=uvwxy with the following co	ondition,		
	i. vwx ≤n			
	ii. vx≠ε			
	iii. for all $i \ge 0$, $uv^i w x^i y$ is in L		600	
6.	Show that L={a ^p p is prime} is not context free	UNDERSTAND BT- L2	CO2	P 2.4
	To prove the given language is not context free, the steps a			2.4
	 Choose the pumping length of <i>p</i>. 	ire as follows,		
		of primes		
	 Such an <i>n</i> must exist since there are an infinite number Let a= 1ⁿ 	of primes.		
	• Let $s = 1^n$, The string is burgless into summer			
	• The string is broken into <i>uvxyz</i> .			
	• Let $ vy = m$.			
	• Then, $ uxz = n-m$.			
	• By the pumping lemma, $uv^{n-m}xy^{n-m}z \in L$	(
	• $ uv^{n-m}xy^{n-m}z = uxz + (n-m) \times (v + y) = n-m + (n-m) m$		Cothotth	
	• Thus, $ uv^{n-m}xy^{n-m}z $ is not prime unless one of the	e above factors is 1.	so that th	e
	given language is not contaut free			
7	given language is not context free.	DEMEMBED	C03	D
7.	Define Turing Machine Turing machines are an abstract model of computation definition of what it means for a function to be computation machine model of computation are:	• •	-	1.4 form
7.	Define Turing Machine Turing machines are an abstract model of computation definition of what it means for a function to be computation machine model of computation are: • A finite amount of internal state. • An infinite amount of external data storage. • A program specified by a finite number of instruction	BT - L1 n. They provide a able. The key featur	precise, res of the language.	1.4 form Turi
7.	Define Turing Machine Turing machines are an abstract model of computation definition of what it means for a function to be computation are: • A finite amount of internal state. • An infinite amount of external data storage. • A program specified by a finite number of instruction • Self-reference: the programming language is express	BT - L1 n. They provide a able. The key featur	precise, res of the language.	1.4 form Turi
	Define Turing Machine Turing machines are an abstract model of computation definition of what it means for a function to be computation machine model of computation are: • A finite amount of internal state. • An infinite amount of external data storage. • A program specified by a finite number of instruction • Self-reference: the programming language is express for its own programs	BT - L1 In. They provide a lible. The key featur ons in a predefined ssive enough to wri	precise, res of the language. ite an inte	1.4 form Turi
7.	Define Turing Machine Turing machines are an abstract model of computation definition of what it means for a function to be computation are: • A finite amount of internal state. • An infinite amount of external data storage. • A program specified by a finite number of instruction • Self-reference: the programming language is express	BT - L1 In. They provide a able. The key featur ons in a predefined ssive enough to wri REMEMBER	precise, res of the language.	1.4 form Turi
	Define Turing Machine Turing machines are an abstract model of computation definition of what it means for a function to be computation are: • A finite amount of internal state. • A finite amount of external data storage. • A program specified by a finite number of instruction • Self-reference: the programming language is express for its own programs Give the configuration of Turing Machine	BT - L1 In. They provide a able. The key featur ons in a predefined ssive enough to wri REMEMBER BT - L1	precise, res of the language. ite an inte	1.4 form Turi
	Define Turing Machine Turing machines are an abstract model of computation definition of what it means for a function to be computation are: • A finite amount of internal state. • A finite amount of internal state. • An infinite amount of external data storage. • A program specified by a finite number of instruction • Self-reference: the programming language is express for its own programs Give the configuration of Turing Machine The configuration of Turing machine is a collection of 7 turing	BT - L1 In. They provide a able. The key featur ons in a predefined ssive enough to wri REMEMBER BT - L1	precise, res of the language. ite an inte	1.4 form Turi
	Define Turing Machine Turing machines are an abstract model of computation definition of what it means for a function to be computation are: • A finite amount of internal state. • A finite amount of internal state. • An infinite amount of external data storage. • A program specified by a finite number of instruction • Self-reference: the programming language is express for its own programs Give the configuration of Turing Machine The configuration of Turing machine is a collection of 7 tup M=(Q,∑, Γ, δ, q0, Δ, or B, F)	BT - L1 In. They provide a able. The key featur ons in a predefined ssive enough to wri REMEMBER BT - L1	precise, res of the language. ite an inte	1.4 form Turi
	Define Turing Machine Turing machines are an abstract model of computation definition of what it means for a function to be computation are: • A finite amount of internal state. • A finite amount of internal state. • An infinite amount of external data storage. • A program specified by a finite number of instruction • Self-reference: the programming language is express for its own programs Give the configuration of Turing Machine The configuration of Turing machine is a collection of 7 turing	BT - L1 In. They provide a able. The key featur ons in a predefined ssive enough to wri REMEMBER BT - L1	precise, res of the language. ite an inte	1.4 form Turi
	 Define Turing Machine Turing machines are an abstract model of computation definition of what it means for a function to be computation are: A finite amount of internal state. An infinite amount of external data storage. A program specified by a finite number of instruction Self-reference: the programming language is express for its own programs Give the configuration of Turing Machine The configuration of Turing machine is a collection of 7 tup M=(Q,∑, Γ, δ, q0, Δ, or B, F) Q is a finite set of states. 	BT - L1 In. They provide a able. The key featur ons in a predefined ssive enough to wri REMEMBER BT - L1	precise, res of the language. ite an inte	1.4 form Turi
	Define Turing Machine Turing machines are an abstract model of computation definition of what it means for a function to be computation are: • A finite amount of computation are: • A finite amount of internal state. • An infinite amount of external data storage. • A program specified by a finite number of instruction • Self-reference: the programming language is express for its own programs Give the configuration of Turing Machine The configuration of Turing machine is a collection of 7 tup M=(Q,∑,Γ,δ,q0,Δ,orB,F) • Q is a finite set of states. • r is a finite set of external symbols.	BT - L1 In. They provide a able. The key featur ons in a predefined ssive enough to write REMEMBER BT - L1 ples	precise, res of the language. ite an inte	1.4 form Turi
	 Define Turing Machine Turing machines are an abstract model of computation definition of what it means for a function to be computation are: A finite amount of internal state. An infinite amount of external data storage. A program specified by a finite number of instruction Self-reference: the programming language is express for its own programs Give the configuration of Turing Machine The configuration of Turing machine is a collection of 7 tup M=(Q, \sum \screwt \scr	BT - L1 In. They provide a able. The key featur ons in a predefined ssive enough to write REMEMBER BT - L1 ples	precise, res of the language. ite an inte	1.4 form Turi
	 Define Turing Machine Turing machines are an abstract model of computation definition of what it means for a function to be computation and the model of computation are: A finite amount of internal state. An infinite amount of external data storage. A program specified by a finite number of instruction. Self-reference: the programming language is express for its own programs Give the configuration of Turing Machine The configuration of Turing machine is a collection of 7 tup M=(Q,∑,Γ,δ,q0,Δ,orB,F) Q is a finite set of states. r is a finite set of external symbols. ∑ is a finite set of input symbols. ∆ or B is a blank symbol used as an end marker for input 	BT - L1 In. They provide a able. The key featur ons in a predefined ssive enough to write REMEMBER BT - L1 ples	precise, res of the language. ite an inte	1.4 form Turi
	 Define Turing Machine Turing machines are an abstract model of computation definition of what it means for a function to be computation are: A finite amount of internal state. An infinite amount of external data storage. A program specified by a finite number of instruction. Self-reference: the programming language is express for its own programs Give the configuration of Turing Machine The configuration of Turing machine is a collection of 7 tup M=(Q,∑,Γ,δ,q0,Δ,orB,F) Q is a finite set of states. r is a finite set of external symbols. ∑ is a finite set of input symbols. ∆ or B is a blank symbol used as an end marker for input symbol used as an end marker for input symbol. 	BT - L1 In. They provide a able. The key feature ons in a predefined ssive enough to write REMEMBER BT - L1 ples ut.	a precise, res of the language. ite an inte CO3	1.4 form Turi rpret P 1.4
	Define Turing Machine Turing machines are an abstract model of computation definition of what it means for a function to be computation are: • A finite amount of internal state. • An infinite amount of external data storage. • A program specified by a finite number of instruction • Self-reference: the programming language is expression its own programs Give the configuration of Turing Machine The configuration of Turing machine is a collection of 7 tup M=(Q,∑,Γ,δ,q0,Δ,orB,F) • Q is a finite set of states. • r is a finite set of input symbols. • ∆ or B is a blank symbol used as an end marker for input symbols. • ∆ or B is a blank symbol used as an end marker for input symbols.	BT - L1 In. They provide a lable. The key feature In. The key feature	a precise, res of the language. ite an inte CO3	1.4 form Turi rpret P 1.4
	Define Turing Machine Turing machines are an abstract model of computation definition of what it means for a function to be computation are: • A finite amount of internal state. • An infinite amount of external data storage. • A program specified by a finite number of instruction • Self-reference: the programming language is expression its own programs Give the configuration of Turing Machine The configuration of Turing machine is a collection of 7 tup M=(Q,Σ,Γ,δ,q0,Δ,orB,F) • Q is a finite set of states. • r is a finite set of external symbols. • ∑ is a finite set of input symbols. • ∆ or B is a blank symbol used as an end marker for input symbol 'a', transition reference. • Reading the input symbol 'a', transition reference.	BT - L1 In. They provide a lable. The key feature In. The key feature	a precise, res of the language. ite an inte CO3	Turi rpret P 1.4

	Subject Code / Nan	<u>ne: CS8501 / Theor</u>	ry of Comp	utation
27	. What are useless symbol in a grammar?	REMEMBER	CO2	PI
		BT - L1		1.4.1
	For any symbol if there is no derivation to generate a ter	rminal string the	n that syn	nbol is
	called useless symbol. All the useless symbols from the prod	uction rule must	be identifi	ed and
	removed to produce the reduced grammar.			
28	. Define simplification of CFG.	REMEMBER	CO2	PI
		BT - L1		1.4.1
	Elimination of null and unit productions and symbols is	called simplificat	tion of CF	G. The
	result of simplified context free grammar is known as rea	luced grammar. '	The reduc	tion of
	context free grammar can be carried out in three ways .			
	Removal of useless symbols			
	 Elimination of ε-productions 			
	Removal of unit productions.			

<u> PART – B</u>

		<			
1.	How a CFG for L is converted into CNF	(AU ND -	UNDERSTAND	CO2	PI
	accepting the same language ? Convert	2020)	BT - L2		2.2.3
	the following CFG into CFG in CNF. (13)				
	$S \rightarrow b A \mid a B A \rightarrow b A A \mid a S \mid a B \rightarrow a B B \mid$				
	b S b				
2.	Construct a Turing Machine for proper	(AU ND –	UNDERSTAND	CO4	PI
	subtraction, which is defined as m – n	2020)	BT - L2		2.2.3
	if $m > n$ and 0 otherwise. (13)				
3.	State and prove GNF (13)	(AU ND -	UNDERSTAND	CO2	PI
		2019)	BT - L2		2.4.4
4.	Design a TM to compute proper subtraction	(AU ND -	APPLY	CO4	PI
	(13)	2019)	BT - L3		2.2.3
5.	Consider two tape TM and determine whe	ther the TM	APPLY	CO4	PI
	always writes a nonblank symbol on its	second tape	BT - L3		2.2.3
	during the computation on any input	string 'w'.			
	Formulate this problem as a language and	l show it is			
	undecidable.	(13)			
6.	Construct TM that replace all occurrence of 1	11 by 101	APPLY	CO4	PI
	from sequence of 0's and 1's.	(13)	BT - L3		2.2.3
7.	(i). Explain techniques for TM Construction	(7)	REMEMBER	CO3	PI
	(ii). Illustrate the Chomsky grammar classif	fication with	BT - L1		2.2.3
	necessary example	(6)			
8.	Construct a TM to reverse the given string.	(13)	APPLY	CO4	PI
			BT - L3		2.2.3
9.	Design a Turing machine to accep	t language	APPLY	CO4	PI
	L= $\{0^n1^n/n >=1\}$ and simulate its action on the	e input 0011.	BT - L3		2.2.3
		(13)			
10.	Explain Turing machine as a computer	of integer	REMEMBER	CO4	PI
	functions with an example.	(7)	BT - L1		2.2.3
11.	i.Design a Turing Machine to recognize {ww^		APPLY	CO4	PI

	Subject Lode / Nam	<u>ie: (30501 / Theorem</u>	y oj comp	utution
	$(0+1)^*$. (7)	BT - L3		2.2.3
	ii. Design TM M for f(x,y)=x*y where x,y are stored in the			
	tape in the form $0^{x}10^{y}1$. (6)			
12.	Show that the language $L=\{a^ib^ic^i/i>=1\}$ is not context free.	REMEMBER	CO2	PI
	(7)	BT - L1		2.4.4
13.	Obtain a grammar in Chomsky Normal Form (CFG)	APPLY	CO2	PI
	equivalent to the grammar G with the	BT - L3		2.2.3
	productions P given. (13)			
	$S \rightarrow aAbB, A \rightarrow aA a, B \rightarrow bB b$			
14.	Construct a equivalent grammar G in CNF for the	APPLY	CO2	PI
	grammar G1 where G1=({S,A,B},{a,b},{S \rightarrow ASB ϵ ,	BT - L3		2.2.3
	$A \rightarrow aAS a, B \rightarrow SbS A bb\}, S).$ (13)			
15.	Convert the following grammar into GNF. (13)	APPLY	CO2	PI
	$S \rightarrow >XY1 0, X \rightarrow 00X Y, Y \rightarrow 1X1$	BT - L3		2.2.3
16.	Convert the following grammar into an equivalent one	APPLY	CO2	PI
	with no unit productions and no useless symbols S->	BT - L3		2.2.3
	ABA, A->aAA aBc bB,B-> A bB Cb,C->CC cC (13)			

_	<u> PART – (</u>	<u>C</u>			
1.	Construct a Turing Machine for multiplying	(AU ND –	APPLY	CO2	PI
	two non negative integers using subroutine	2020)	BT - L3		2.2.3
	(15)				
2.	(i).Design a TM to compute multiplication of	(AU ND –	APPLY	CO4	PI
	two positive integers (8)	2019)	BT - L3		3.2.1
	(ii).Design a TM to recognize the language				
	$\{0^n 1^n 0^n \mid n \ge 1\}$ (7)				
3.	Design a Turing machine to accept language L=	$={a^nb^n/n>=1}$	APPLY	CO3	PI
	and simulate its action on the input n=3.	(15)	BT - L3		3.2.1

<u>UNIT V</u> UNDECIDABILITY

	<u>PAR'</u>	<u>Г – А</u>								
1.	What are recursive language?	(AU ND –	REMEMBER	CO5	PI					
		2020)	BT - L1		1.4.1					
	A language is recursive if there exists a Tur	ing Machine tha	it accepts every st	ring of the	9					
	language and rejects the string that is not in	n the language.								
		Yes								
	W	► No								
2.	Define the classes P and NP problem.	(AU ND –	REMEMBER	CO5	PI					
	Give example problems for both	2020)	BT - L1		1.4.1					
	• Class P: The problem solvable in poly	nomial time on	a typical compute	er are exac	tly the					
	same as the problems solvable in polynomial time on a Turing machine.									
	Ex: Kruskal's Algorithm									
	• Class NP: The problems which can	not be solvable	e in polynomial	time are	called					
	intractable problem.									

	Sul Example for NP-complete problems are		e / Nan	<u>ne: CS8501 / Theor</u>	ry of Comp	outatio
	 0/1 Knapsack problem. 	-,				
	Hamiltonian cycle.					
	 Travelling salesman problem. 					
3.		(AU ND		UNDERSTAND	C05	PI
з.	When do you say a Turing machine is an algorithm?	(AU ND 2019)	-	BT - L2	05	1.4.1
	A Turing machine is a mathematical mo		comp		inos ana	
	machine, which manipulates symbols o rules. Despite the model's simplicity, giv capable of simulating that algorithm's logic	n a str en any c	rip of comput	tape according er algorithm, a	to a ta	ble o
4.	Define NP – Class	(AU ND		REMEMBER	CO5	PI
		2019)		BT - L1		1.4.1
	Class NP problems are problems whic polynomial time. Example: TSP problem.	h are r	ion-de	terministic prob	lems sol [,]	ved in
5.	List the properties of recursive and recur	rsive	R	REMEMBER	C05	PI
	enumerable language.			BT - L1		1.4.
	The properties of recursive and Recursively	Enumer	able L	anguage		
	• The complement of a Recursive language			0 0		
	• The union of two recursive language			The union of	two Recu	rsivel
	Enumerable languages is RE.					
	• If a language L and complement L are bo	oth RE, th	ien L is	recursive.		
6.	Write short notes on tractable problem			REMEMBER	C05	PI
	r			BT - L1		1.4.
	The problems which are solvable by po	lynomia	l time	algorithms are	called tr	actabl
	problems.	-		-		
	For example: The complexity of the Kruska	al's algor	ithm is	s 0(e(e+m)) when	re e, the n	umbe
	of edges and m ,the number of nodes.					
7.	What is primitive recursive function?		R	REMEMBER	CO5	PI
				BT - L1		1.4.2
	The set PR of primitive recursive function is	s defined	as foll	OWS:		
	• All initial function are elements of PR.					
	For any k>=0 and m>=0 , if f:N ^m ->N and g ₁ ,g	2,gk:N ^r	ⁿ ->N a	re elements of PF	R, then the	!
	function $f(g_1,g_2,,g_k)$ obtained from f and g	g 1, g 2	g _k by c	composition is an	element o	of PR.
8.	Define NP Completeness		R	REMEMBER	CO5	PI
				BT - L1		1.4.3
	A language L is NP- complete if the following	ig statem	ients a	re true		
	• L is in NP					
	• For every language L' in NP there is a po	lynomia	l – time	e reduction of L' t	o L.	
9.	Define NP-hard and NP-completeness pro	oblem.	R	REMEMBER	CO5	PI
				BT - L1		1.4.1
	• NP Hard: if a problem A is reducible to The problem A is not solved in polynom			ans that B is at le	ast as har	d as A
	 NP-Complete: The group of problems v NP-Complete problem. 	which ar	e both	in NP and NP-ha	rd are kn	own a

			<u>ne: CS8501 / Theo</u> r		
25.	Define CNF satisfiability problem	I	REMEMBER	CO5	PI
			BT - L1		1.4.1
	The CNF Satisfiability Problem (CNF-SAT) is		-		
	the Boolean formula $f(x1, x2,, xn)$, is spe				
	that means that it is a conjunction of clauses,	where a cla	use is a disjunctio	on of litera	ls, and
	a literal is a variable or its negation.				
26.	What is the measuring complexity for NFA?	I	REMEMBER	CO5	PI
			BT - L1		1.4.1
	Time Complexity for NFA:				
	Let T be a non-deterministic TM t, which a	ccepts lang	uage L over alph	abet ∑.Th	e time
	complexity T _t (n) is the minimum number of r	noves t can	make an any inpu	t string of	length
	n.				
	Space Complexity for NFA:				
	Space complexity of a non-deterministic TM	S _t (n) is the	minimum number	of tape s	quares
	used by TM for any input string of length n.				
L	PART	– <u>B</u>			
1.	Prove that Universal language is recursively	(AU ND –	UNDERSTAND	CO5	PI
	enumerable but not recursive. (13)	2020)	BT - L2		1.4.1
2.	Define PCP and prove that PCP is	(AU ND -	REMEMBER	CO5	PI
	undecidable (13)	2020)	BT - L1		1.4.1
3.	Prove that Post Correspondence Problem is	(AU ND -	UNDERSTAND	C05	PI
5.	undecidable (13)	2019)	BT - L2	005	1.4.1
4.	Prove that the L _u is recursively enumerable	(AU ND -	UNDERSTAND	CO5	PI
	but not recursive (13)	2019)	BT - L2	005	1.4.1
5.	Explain universal Turing machine	(13		C05	PI
5.		(15	BT - L1	005	1.4.1
6.	Explain how to measure and classify complex	ity. (13		CO5	PI
0.	Explain now to measure and classify complex	ity. (13	BT - L1	05	1.4.1
7.	Eurlain requiring and requiringly enumerable	languagaa	REMEMBER	C05	1.4.1 PI
/.	Explain recursive and recursively enumerable			605	
0	with example	(13 <u>)</u>		COF	1.4.1
8.	Explain tractable and intractable problem wit		REMEMBER	CO5	PI
0	example	(13)		60F	1.4.1
9.	Elaborate on primitive recursive functions wi		REMEMBER	CO5	PI
10	example	(8)			1.4.1
10.	Outline the concept of polynomial time reduct	tions. (6)	REMEMBER	CO5	PI
		(=)	BT - L1		1.4.1
11.	Prove that "MPCP reduces to PCP"	(7)	UNDERSTAND	CO5	PI
			BT - L2		1.4.1
12.	State and explain RICE theorem	(7)	REMEMBER	CO5	PI
			BT - L1		1.4.1
13.	Show that union of two recursive language is		UNDERSTAND	CO5	PI
	and union of two RE language is recursive.	(6)	BT - L2		1.4.1
14.	Explain about "A language that is not Recursiv	vely	REMEMBER	CO5	PI
	Enumerable".	(6)	BT - L1		1.4.1
15.	Prove Lne is recursively enumerable.	(7)	UNDERSTAND	CO5	PI
			BT - L2		1.4.1

Subject Code / Name: CS8501 / Theory of Computation

Subject code / Han			
Prove that if a language is recursive iff it & its	UNDERSTAND	CO5	PI
complement are both RE (7)	BT - L2		1.4.1
Explain about undecidability of PCP.(6)	REMEMBER	CO5	PI
	BT - L1		1.4.1
. Define PCP.Let Σ {0,1}.Let A and B be the lists of three	REMEMBER	CO5	PI
strings each defined as, Wi=A={1,10111,10},	BT - L1		1.4.1
Xi=B={111,10,0},Does this PCP have a solution? (6)			
Prove that the function f add (x,y)=x+y is a primitive	UNDERSTAND	CO5	PI
recursive. (7)	BT - L2		1.4.1
7	complement are both RE(7)7. Explain about undecidability of PCP.(6)8. Define PCP.Let ∑{0,1}.Let A and B be the lists of three strings each defined as, Wi=A={1,10111,10}, Xi=B={111,10,0},Does this PCP have a solution?(6)9. Prove that the function f add (x,y)=x+y is a primitive	 7. Explain about undecidability of PCP. (6) REMEMBER BT - L1 8. Define PCP.Let ∑{0,1}.Let A and B be the lists of three strings each defined as, Wi=A={1,10111,10}, Xi=B={111,10,0},Does this PCP have a solution? (6) Prove that the function f add (x,y)=x+y is a primitive 	complement are both RE(7)BT - L27.Explain about undecidability of PCP.(6)REMEMBER BT - L1CO5 BT - L18.Define PCP.Let Σ {0,1}.Let A and B be the lists of three strings each defined as, Wi=A={1,10111,10}, Xi=B={111,10,0},Does this PCP have a solution?BT - L19.Prove that the function f add (x,y)=x+y is a primitiveUNDERSTANDCO5

Maximum: 100

QUESTION PAPER CODE: 90159 B.E / B.Tech DEGREE EXAMINATIONS, NOV / DEC 2019 Fifth Semester Computer Science and Engineering CS8501 – Theory of Computation (Regulation 2017)

Time : 3 Hrs

Marks

Answer All questions

PART - A (10 * 2 = 20)

- 1. Prove by induction on n>=1 that $\sum 1/i(i+1) = n/(n+1)i=1$
- 2. Formally define Deterministic Finite Automata (DFA).
- 3. Construct regular expression corresponding to the state diagram

4. State the definition of pumping lemma for regular set.

5. When do you say a grammar is ambiguous?

6. Give a formal definition of Push Down Automata?

7. What are the advantages of having a normal form for a grammar?

8. Define the language recognized by the Turing Machine

9. When do you say a Turing machine is an algorithm?

10. Define NP – Class

PART – B

11. a) Construct a Deterministic Finite Automata equivalent to the NFA M=({p,q,r,s},{0,1}, δ p,{s}) where δ is given by (13)

δ	0	1
р	{p,q}	{p}
q	{r}	{r}
r	{s}	-
S	{S}	{s}

(OR)

b) Give NFA accepting the set of strings in $(0+1)^*$ such that two 0's are separated by a string whose length is 4i, for some i>=0

12. a).(i).Prove that any language accepted by a Deterministic Finite Automata can be represented by a regular expression

(7)

(ii). Construct a FA for the regular expression 10 + (0+11)0*1.

(6)

b).Prove that the following languages are not regular: (i). $\{w \in \{a,b\}^* \mid w=wR\}$ (7)

(OR)

Subject Code / Name: CS8501 / Theory of Computation (ii). Set of strings of 0's and 1's beginning with a 1 whose value treated as a binary number is a prime. (6) 13. a) Suppose L=L(G) for some CFG G=(V,T,P,S) then prove that L- $\{\in\}$ is L(G') for a CFG G' with no useless symbols or \in -productions. (OR)b) Prove that the languages accepted by Push Down Automata using empty stack and final states are equivalent 14. a) State and prove Greibach Normal Form (OR) b) Design a TM to compute proper subtraction 15. a) Prove that Post Correspondence Problem is undecidable (OR) b) Prove that the Lu is recursively enumerable but not recursive PART - C 17. a)(i). Suppose L= N(M) for some PDA M, then prove that L is a CFL (7) (ii). Give a CFG for the language N(M) where $M = (\{q0,q1\}, \{0,1\}, \{Z0,X\}, \delta, q0, Z0, \phi)$ and δ is given by, (8) δ (q0,1,Z0) = {(q0, XZ0)} δ (q0, ξ ,Z0) = {(q0, ξ) } δ (q0,1,X) = {(q0,XX)} δ (q1,1,X) = {(q1, ξ)} $\delta(q0,0,X) = \{(q1,X)\} \delta(q1,0,Z0) = \{(q0,Z0)\}$ (OR)b)(i).Design a TM to compute multiplication of two positive integers (8) (ii).Design a TM to recognize the language $\{0^n 1^n 0^n | n \ge 1\}$ (7)

QUESTION PAPER CODE: X10319

B.E./B.Tech. DegreeExaminationS, November/December2020

Fifth SemesterComputer Science and Engineering

CS 8501 – THEORY OF COMPUTATION

(Regulations 2017)

Time : Three Hours

Maximum : 100 Marks

Answer all questions

Part- A (10×2 = 20 Marks)

- 1. Define Deterministic Finite Automaton.
- 2. State any four types of proofs.
- 3. Write the regular expression for all strings that contain no more than one occurrence of aa.
- 4. Write a regular expression for even number of a's and even number of b's of a string w = {a, b}*.
- 5. Write a Context Free Grammar for the language consisting of equal number of a's and b's.
- 6. Define Deterministic PDA.
- 7. What are the two normal forms of CFG? Write their productions format.
- 8. Define the language recognized by any Turing Machine.
- 9. What are recursive languages?
- 10. Define the classes P and NP problem. Give example problems for both.

Part- B (5×13 = 65 Marks)

11. a) Prove that for every Lrecognized by an NFA, there exists an equivalent DFA accepting the same language L.

(OR)

- b) Prove that for every Lrecognized by an ∈-NFA, there exists an equivalent DFA accepting the same language L.
- 12. a) Prove that the following languages are not regular using pumping lemma.(7)i) All unary strings of length prime.(7)ii) L= $\{uu|u\in\{0,1\}^*\}$.(6)

(OR)

b) State and Prove any two closure properties of Regular Languages.

13. a) How ∈-productions are eliminated from a grammar whose language doesn't have empty string ? Remove ∈-productions from the grammar given below. S → a|aA|B|CA→ aB| ∈ B → Aa C→ aCD D → ddd

(OR)

b) Write procedure to find PDAto CFG. Give an example for PDAand its CFG.

14. a) How a CFG for Lis converted into CNF accepting the same language ? Convert the following CFG into CFG in CNF. S \rightarrow b A| a B A \rightarrow b AA| a S | a B \rightarrow a B B | b S | b

(OR)

b) Construct a Turing Machine for proper subtraction, which is defined as m - n if m > n and 0 otherwise.

15. a) Prove that Universal language is recursively enumerable but not recursive.

(OR)

b) Define PCP and prove that PCP is undecidable.

Part- C (1×15 = 15 Marks)

16. a) Construct a Turing Machine for multiplying two non negative integers using subroutine.

(OR)

b) How PDAis converted into CFG? Convert the following PDAinto CFG. P = ({p, q}, {0, 1}, {Z, X}, δ , p, Z, Φ) δ (p, 1, Z) = {(p, XZ)}, δ (p, \in , Z) = {(p, \in)} δ (p, 1, X) = {(p, XX)}, δ (q, 1, X) = {(q, \in)}, δ (p, 0, X) = {(q, X)}, δ (q, 0, Z) = {(p, Z)}

• 🕵

CERT

150 9001

ISO 9001 : 2008

Name of the Staff	: S. RUVANESWIARI
Department ·	CSE
Subject Code & Name	CS8501 - THEORY DE COMPUTATION
Branch	: CSE
Semester	·
	21-22 odd
*	

. 1

• 🕵

Attendance and Assessment Record

Name of the Staff	: S. PUVANESWIARI
Department	CSE
Subject Code & Name	: CS8501 - THEORY DE COMPUTATION
Branch	: CSE
Semester	:
	21-22 odd
*	

. 1

57

me of the Staff	: S. RUVE	INESWARI	Dept	1111534
me of the Subjec	THEORY	DE COMPUTE	ILON Code C38	3001
anch	CSE		and a spanner of the strange and a second	V-1-1at-1
mester	V		Year	What and and
te of Commence	ment : <u>18.08.2</u>	02) Last Wor	king Day <u>2</u>	1.2022
Details	Sessions Planned	Sessions Handled	% of Portions covered	Sign. of HOD
End of the First Month	6	6	- 15-1-1000	551
End of the Second Month	22	22	50%	SAT
End of the Third Month	35	35	78 7.4	and and a start of the start of
End of the	45	45	100%	88

Att	endance Par	liculars	A	1.00	9- F		14	A. M.	17 73 (1)	2 -	1 .	14			·	8	9	14	15	16	17 :	3:	242	82	1
	1 - 1 - F.	Date				25			31	1-	2	3	7		Roll No.	9			9				90	-	0
Roll No.	Name	Month		8	8	8	8	8	8	9	9	9	9		Rol		B	3	_	5	4	-		3	-
Ro		Period	العربة المرا المتر	5	3	1	5	4	3	1	5	4	2		1	1	5	2	,	-	4		T	2	
1	R - AARTH I	in the south in	1: 1. <u>1</u> .	1	1-	1	1	1	1	1	1	1	1	-	2	1	1	4	÷	-	4	+	+	4	1
2	S. ALYAPPAN			1	A	A	1	1	1	1	1	1				L	-/-	4	_			#	+	;†	ľ
3	G.S. AJAY			1	1	1	A	1	1	1	1	1	j		3	1	/	-4			-4		+	-	ł
4	K. AKASH	L - Warth - ware		1	1	1	1	/	A	1	1	1	1		4	1	1	-4	_	A	1	A	4	4	ł
5	G. AKSHAYA	LAKSHM)	i dp. (1	1	1	1	1	1	1	l	0yl	17		5	1	1	-1	1	1	1	1	1	1	ł
6	A. ARAVINO		-	1	1	1	A	1	1	1	1	1	A	and a second	6	1	1	A	/	1	/	A	4	1	ł
7	A.B. AVUDA		about A	1	1	1	A	1	1	1	1	1	1		7	1	1	A	1	1	1	A	1	1	
8	A. BAKIYA		**** (140-40) (1794 [1]	1	A	1	1	Ĩ	1	1	1	1	1		8	t	1	1	i	1	1	1	1	1	-
9	M. BALAKRIS	HNAN	1	1	1	1	A	1	1	/	1	1	1		9	1'	1	A	1	1	1	A	1	1	_
10	S. BANYA			1	1	Ĭ	1	1	1ª	A	1	1	1	1	10	1	/*	1	1	1	1	1	ŕ	1	
11	T. BHAVATHE	RANI		1	ŗ	1	1	1	1	1	1	1	1		_11	1	1	1	1	1	1	1	1	1	
12	P. DEFPIKA			1	1	1	1	1	1	1	1	1	1		12		1	1	1	1	1	1	1	1	
	S. DEVIPRIVE	N pā	te	1	1	4	1	1	Ĩ	1	1	1	1		13	1	1	1	1-	1	1	1	1	1	
	G. DHARANI	Z		1	1	1	1	1	1	1	Ì	,	1		14	1	1	1	1	1	A	1	1	1	
15	J. DIVAKARA	N		1	1	I	1	1	1	1	,	,	Han .	Ę	.15	1	1	1	1	1	1	11	A	1	
16	T. ELAYAOHF	RSHINI	- 10	1	A	1	1	1	1	1	1	,	1		16	1	1	1	1	1	1	1	1	1	
17	J. FASILA AN	REFN	~~	1	1	1	1	1	1	1	1	,	1		17		A	1	1	Ī	7	,	1		-
	M. GOKUL		and the second s	1	1	1	A	,	,	,	1	,	4		18	1	1	1		1	1	1	7	1	-
	A. GOMATHI			1	,	j	1	1	,	/	7	A	1		19	1	1	1	A	Ť,			i	1	
20	P. GOPINATI		1.1 ×	1	1	,	· ,	1	;	,	,	1	1	1	20	1	,	,	A	T,		1	1	ŕ,	,
21	K. GOVIN DHE	IRAJAN	E.	1	1	1	л¥	',	-/ ,		1	-	1,		21	1	()	ľ,	1	ť,	A	ť,	ť	1	1
.2	K-KAMALI		1	1	A	1	A	-	/.	-4	-	1		1	22	1	ť		<u> </u>	ť.	A	+	-	T	1
	K-KANISHKA	R		À	1	+	_^^	-/-	-/	A	_4	-/-	,		23	1,	1/	1.	F	+	+	+	+	ť	-
-	N. KARKUZHA	LI		1			-,	-	/	N	1	4	,	1.	24	1,	1,	₽.	T'	#	+	+	1	+	1
	R. KARTHIKA	1		A	/	-	,	4	4		4	-	1		25	1;	· ,	\uparrow	t'	+	+	+	1	+	/
in .			2		(/	/	/	/	A	/	/	1	3		1	/	\boldsymbol{U}		IF	<u>ŧ</u> []		1	1	1

Ž Name Date Name Mont Peric 1 R. PORTH I Peric 2 S. BIYAPPAN 3 3 G. S. BIYAPPAN 3 3 G. S. BIYAPPAN 3 4 K. BKBSH 5 5 G. AKSIHAYALAKSHI 6 6 A. BRAYINO 7 7 A.B. AVUDALAPPAN 8 8 A. BAKIYA LAKSHI 9 9 M. BALAKRISHNON 10 9 M. BALAKRISHNON 10 9 M. BALAKRISHNON 10 9 M. BALAKRISHNON 10 10 S. BAVYA 11 11 T. BHAVATHABANI 11 12 P. DEFPIKA 13 13 S. DEVIPRIVA 14 14 G. DHARANI 16 15 T. DIVAKABRAN 16 16 T. ELAYADHABANI 17 17 T. FAGUA AFREEN 18	Atte	ndance Parti	cular
R Peric 1 R. PORTH I 2 S. PLYAPPAN 3 G. S. ATAY PRESENS 4 K. PKASH 5 G. AKSHAPALAKSHI 6 A. ARAVINO 7 A.B. ANUDALAPAN 8 A. BAKUAALAKSHI 9 M. BALAKISHNO 7 A.B. ANUDALAPAN 9 M. BALAKISHNON 10 S. BAVAA 11 T. BHAVATHARANI 12 P. DEFPIKA 13 S. DEVIPRIVA 14 G. DHARANI 15 T. DIVAKARAN 16 T. ELAYADHARSHINI 17 T. FASILA AFREEN 18 M. GOKUL 19 A. GODATHI 20 P. GODINATH 21 K. GAVIN DHARATAN 22 K. KATANALA 23 K. KANISHKAR 24 N. KARKUZHALI	to.		Date
Peric 1 R. BORTH I 2 S. BIYAPPAN 3 G. S. BITAY PROSENS 4 K. BKASH 5 G. AKSHAPABLAKSHI 6 A. BRAVINO 7 A.B. AVUDALAPPAN 8 A. BARNINO 7 A.B. AVUDALAPPAN 8 A. BARNINO 7 A.B. AVUDALAPPAN 9 M. BALAKRISHNON 10 S. BAVYA 11 T. BHANATHARANI 12 P. DEFPIKA 13 S. DEVIPRIVA 14 G. DHARANI 15 T. DIVAKARAN 16 T. ELAYADHARSHIMI 17 T. FASILA AFREEN 18 M. GOKUL 19 A. GODATHHI 20 P. GODINATH 21 K. GAVIN DHARATAN 22 K. KADINALI 23 K. KADINALI 24 N. KARKUZHALI	A llo	Name	Mont
2 S. BIYAPPAN 3 G. S. ATAY PRESEN 4 K. BKASH 5 G. AKSHAYALAKSHI 6 A. ARAYINO 7 A.B. AVUDALARSHI 6 A. BARAYINO 7 A.B. AVUDALARDAN 9 M. BALAKISHNON 9 M. BALAKISHNON 10 S. BANYA 11 T. BHANATHARANI 10 S. BANYA 11 T. BHANATHARANI 12 P. DEFPIKA 13 S. DEVIPRIVA 14 G. DHARANI 15 T. DIVAKARAN 16 T. ELAYADHARSHINI 17 T. FASILA AFREEN 18 M. GOKUL 19 A. GOMATHI 20 P. GODINATHI 21 K. KATANI 22 K. KATANI 23 K. KANISHKOR 24 N. KARKUZHALI	œ	المليان	Peric
3 G. S. BIBY PRESEN 4 K. BKBSH 5 G. AKSHANALAKSHI 6 A. ARAVINO 7 A.B. AVUDALARANNO 7 A.B. AVUDALARANNO 7 A.B. AVUDALARANNO 8 A. BAKLYA LAKSHD 9 M. RALAKSHANON 10 S. BAVYA 11 T. BHAVATHARANI 12 P. DEFPIKA 13 S. DEVIPRIVA 14 G. DHARANI 15 T. DIVAKARAN 16 T. ELAYADHARSHINI 17 T. FASILA AFREEN 18 M. GOKUL 19 A. GADDATHI 20 P. GODINATH 21 K. GAVIN DHARATAN 22 K. KATAL 23 K. KANISHKAR 24 N. KARKUZHALI	1 -	R. ADRTH 1	
4 K. BKBSH 5 G. AKSTHAYALAKSHI 6 A. ARAYINO 7 A.B. AVUDALARDAN 8 A. BAKIYA LAKSHI 9 M. BALAKISHNAN 10 S. BALYA 11 T. BHAVATHARANI 12 P. DEFPIKA 13 S. DEVIPRIVA 14 G. DHARANI 15 T. DIVAKARAN 16 T. ELBYADHARSHINI 17 J. FASILA AFREEN 18 M. GOKUL 19 A. GOMATHI 20 P. GODINATHI 21 K. KATANI 22 K. KATANI 23 K. KANISHKAR 24 N. KARKUZHALI	2	S. ALYAPPAN	
5 G. AKSHANALAKSHI 6 A. ARAVINO 7 A.B. AVUDAJAPAN 8 A. BAKIYA JAKSHI 9 M. BALAKIYA JAKSHINAN 10 S. BALYA 11 T. BHAVATHARANI 12 P. DEFPIKA 13 S. DEVIPRIVA 14 G. DHARANI 15 J. DIVAKARANI 16 T. ELAYADHARSHINI 17 J. FASILA AFREEN 18 M. GOKUL 19 A. GOMATHI 20 P. GODINATHI 21 K. KADNALI 22 K. KADNALI 23 K. KADNISHKAR 24 N. KARKUZHALI	3	G.S. ATAY P	RASAN
6 A. ARAVINO 7 A. B. AVUDAJARDAN 8 A. BAKIYA JAKSHU 9 M. RALAKISHNAN 10 S. BAVYA 11 T. BHAVATHARANI 12 P. DEFPIKA 13 S. DEVIPRIVA 14 G. DHARANI 15 T. DIVAKARAN 16 T. ELBYADHARSHINI 17 J. FASILA AFREEN 18 M. GOKUL 19 A. GOMATHI 20 P. GODINATHI 21 K. GOVIN DHARATAN 23 K. KATANILI 24 N. KARKUZHALI	4	K. AKASH	L
7 A. B. AVUDAJARAN 8 A. BAKIYA LAKKHU 9 M. BALAKRISHNAN 10 S. BAVYA 11 T. BHAVATHARANI 12 P. DEFPIKA 13 S. DEVIPRIVA 14 G. DHARANI 15 T. DIVAKARAN 16 T. ELAYADHARSHINI 17 J. FASILA AFREEN 18 M. GOKUL 19 A. GODATHI 20 P. GODINATH 21 K. GAVIN DHARATAN 23 K. KATALI 24 N. KARKUZHALI	5	G. AKSIHAYAL	AKSHI
8 A. BAKIYA IAKAHD 9 M. BALAKRISHNAN 10 S. BAVYA 11 T. BHAVATHARANI 12 P. DEFPIKA 13 S. DEVIPRIVA 14 G. DHARANI 15 T. DIVAKARAN 16 T. ELAYADHARSHINI 17 J. FAGILA AFREEN 18 M. GOKUL 19 A. GODATHI 20 P. GODATHI 21 K. GAVIN DHARATAI 22 K. KADDALI 23 K. KADNALI 24 N. KARKUZHALI	6	A - ARAVINO	
9 M. RALAKRISHNAN 10 S. BANYA 11 T. RHANATHARANI 12 P. DEFPIKA 13 S. DEVIPRIVA 14 G. DHARANI 15 T. DIVAKARAN 16 T. ELAYADHARSHINI 17 T. FASILA AFREEN 18 M. GOKUL 19 A. GOMATHI 20 P. GODINATHI 21 K. GOVINDHARATAN 22 K. KADDOLI 23 K. KARKUZHALI 24 N. KARKUZHALI	7	A.B. AVUDAN	APPAN
10 S. BAVYA 11 T. BHAVATHARANI 12 P. DEFPIKA 13 S. DEVIPRIVA 14 G. DHARANI 15 T. DIVAKARAN 16 T. ELAYADHARSHINI 17 T. FAGUA AFREEN 18 M. GOKUL 19 A. GODATHI 20 P. GODINATH 21 K. GAVIN DHARATAN 23 K. KADUALI 24 N. KARKUZHALI	8	A BAKIYA L	ÐKSHD
11 T. BHAVATHARANI 12 P. DEFPIKA 13 S. DEVIPRIVA 14 G. DHARANI 15 T. DIVAKARAN 16 T. ELBYADHARSHINI 17 T. FASILA AFREEN 18 M. GOKUL 19 A. GOMATHI 20 P. GODINATHI 21 K. GOVINDHARATHI 23 K. KADDOLI 23 K. KARKUZHALI	9	M. BALAKRIS	NAN
12 P. DEFPIKA 13 S. DEVIPRIVA 14 G. DHARANI 15 T. DIVAKARAN 16 T. ELAYADHARSHINI 17 T. FASILA AFREEN 18 M. GOKUL 19 A. GODDATHI 20 P. GODINATHI 21 K. GOVIN DHARATAI 22 K. KATTALI 23 K. KANISHKAR 24 N. KARKUZHALI	10	S. BANYA	
13 S. DEVIPRIVA 14 G. DHARANI 15 J. DIVAKARAN 16 T. ELBYADHARSHINI 17 J. FASILA AFREEN 18 M. GOKUL 19 A. GOMATHI 20 P. GODINATHI 21 K. GOVINDHARATAI 22 K. KADDOLI 23 K. KARKUZHALI 24 N. KARKUZHALI	11	T. BHAVATHA	RANI
14 G. DHARANI 15 T. DIVAKARAN 16 T. ELAYADHARSHINI 17 T. FAGUA AFREEN 18 M. GOKUL 19 A. GODATHI 20 P. GODINATHI 21 K. GOVINDHARATAI 22 K. KATTALI 23 K. KANISHKAR 24 N. KARKUZHALI	12	P. DEFPIKA	
15 J. DIVAKARAN 16 T. ELBYADHARSHINI 17 J. FASILA AFREFN 18 M. GOKUL 19 A. GOMATHI 20 P. GODINATHI 21 K. GOVINDHARATAI 22 K. KADDOLI 23 K. KARKUZHALI 24 N. KARKUZHALI	13	S . DEVIPRIVA	16
16 T. ELBYADHARSHINI 17 T. FASILA AFREEN 18 M. GOKUL 19 A. GOMATHI 20 P. GOMATHI 21 K. GOVINDHARATHI 22 K. KAMALI 23 K. KAMALI 24 N. KARKUZHALI	14	G. DHARANI	
17 Л. FASILA AFREEN 18 М. GOKUL 19 А. GOMATHI 20 Р. GOMATHI 21 К. GOVINDHARATAI 22 К. КАПЛАLI 23 К. КАЛЛАLI 24 N. КАРКИЗНАР	15	J. DIVAKARAN	V
18 M- GOKUL 19 A. GOMATHI 20 P. GOMATHI 21 K. GOMATHI 21 K. GOMATHI 22 K. KAMALI 23 K. KAMALI 24 N. KARKUZHALI	16	T. ELBYROHD	SHINI
19 A. GODDATH 20 P. GODDATH 20 P. GODDATH 21 K. GODDATH 21 K. GODDATH 22 K. KADDAL 23 K. KADDAL 24 N. KARKUZHAL	17	J. FASILA AF	REFN
20 P. GODINETET 21 K. GODINETET 21 K. GODINETET 21 K. GODINETET 22 K. KONINDHARATAN 23 K. KAMALI 23 K. KANISHKAR 24 N. KARKUZHALI	18	M. GOKUL	·
20 P. GODINATH 21 K. GOVIN DHARAJAN 22 K. KATADLI 23 K. KANISHKAR 24 N. KARKUZHALI	19	A. COMPATHI	
21 K. GOVIN DHARAJAI 22 K. KAMALI 23 K. KAMALI 24 N. KARKUZHALI	20		1. A. A. P.
22 <u>K. KAMALI</u> 23 <u>K. KANISHKAR</u> 24 <u>N. KARKUZHALI</u> 25	21		1.5400
23 K. KANISHKAR 24 N. KARKUZHALI	22		
24 N. KARKUZHALI	23		
2E	24	· · ·	
	25	R. KARTHIKA	

$ \begin{array}{c} \underbrace{9}{10} \\ \hline 9 \\ \hline 1 \\ 1 \\$			_				-	_		_								
$ \frac{1}{22} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c$	ġ		-	-+	D١	05	e	1	60	1	3	12	2	10	21	1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Soll	9	(1	10	10	1	•	10	ı	0	10						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ш	2	Ę	5	4	3	9	-	١			1		١	3			ALC: N
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1		1	1			,	A		1	1		L				Sector Sector
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	1		1	1	1	1	4	1	L	1	1		1		/		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	1	1	ľ	L	I		/	T	1	L	1		1		,		and and
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	1		1	1	1		1	1	1	(1		1	,	1		
7 j	5	J		1	Ĩ		1	A	1	1	I	(1	1	-		and and a
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6		1	1	1	1	1	1		4	A			1	1	1		No.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7		4	1	1		4	١		(1		1	1		1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	1	ł	t	1			1	1	À	l		1	1		1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9		4	1			4	1		1	1		A	1		1	Contraction of	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	1	A	1	1	1		1			1			1		1		
13 1	11		1	1	1	1		1			(1	ALC: NO	
14 1	12	1	1	1	1		1	1		1	1			ļ		1	ALC: NO	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13		1	1	1		(1		1	1			4		1	101	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14		1	1	1	1		J		ŀ		1	l		1	1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15		1	1	1		1	1		1			4	1		1. Ja.	4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16		1	1	A		1	1		1		(I		1	1	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17		L	1		1	1	ŝ	1	(1	1		t		ĩ	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18		I	J		A	1	J		1		l	l		(ī	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19		1	1			1	1	4	L		ι	I		ι		1	
21 /	20		1	1		1	1		1	1		ι	I		L		Ĵ	17.28 D
22 1 A J I 1 1 1 I I 23 I I I I I 1 I I I 24 I I I I I I I I I	21	4				T				l				ı	I		1	U
23	22			1	_			T			T		T					
24 1 1 1 1 1 1 1 1 1 1 1	23		1	1	1		-	1		_			Γ	ι			1	
25 1 1 1 1 1 1 1 1 1 1	24		1	1			1		1		1	l			1		1	
	25		1	1		1	1		1		1	L		L	l		1	

.

_				Т		Г		_	Т				-	L			٦		
	No.	22	+	-	27	╋	28	29	4	2	9'	3	90	+	0	1	Ц		
	Roll No.	10		10	10	+	10	10	2	1)	۱	1	1)	+	U	1	4		
Y.		١	1	Ł	۱	+	3	1	_	4	┞	١	2	-	۱	ľ	-		
	1	1	1		1	4	1	1	_	1	Ļ	1	1	4	1	1	1		
	2	1	\downarrow	Ц	1	1	ľ	1		1	╞	1	1	4	1	+	,		
	3	1	1	L	1	4	1		Ą	1	ļ	1		4	1	1	1		
ł	4	1		1		4	1		1	1	1	1		1	1	4	1		
1	5	1		I		Ц	1		1	1	1	-1		1	1	4	1		
1	6	1		1	1		1		1	1	1	1		t	1		1		
1	7			1			A		L	1		1		1	1		1		
	8		1	I		1	1		(1		t)		1		
L	9			ť		Ĺ	1		1		1	1	1	1	1		1	1	
	10			(Ĭ		1	1	1		1		ł		I		1	
	11			1		1	1		1		1		/	1		1		1	
	12		1	1		1			1		($^{\prime}$		1	1		1	
	13		1	1		1		1		1	1	Т	1	1		1	T	1	
	14		1			1	•	A	1		1	T	1		1	1	T	1	
	15		١	1	Ą	1	T	1	Γ	1	1	T	1		l	1	T	1	
Ī	16	;	1	Г	A	1	T	l	t	1		1	1	T	(,	1	
Ī	17	,	1	Г	1		1	1	t	1	,	1	1	t	1		,	1	
Ì	18	3	1	t	A		1	1	t	1		/	1	t	1	1	1	1	
	19	Ð	1	t	A	T	i	A	t	(1)	t	1	t	1	1	1
	2	-	1	t		t	1	1	t		,	-		\dagger	1	t		1	1
	2	_	1	+		t	1	1	+	1	1			+	1		1	1	+
	2	-	H	+		+		1	-	1	+	/	4	1		+	1	1	+
	t	2		+	1	+	1	1		1	+	/	+			4	1	-	-
	-		₽	-	1	+	A	μ	-	l	T	1		Ĺ	-	1	1	+	,
	-	4	╀	1	1	4	_	┞	1	-		-		L		1	1	+	1
	2	25		1	1		A	1		5		1		ŀ		1	1		l
										Э									

Att	endance Parti	cular
ō	1. 1 2 3 5 8	Date
Roll No.	Name	Mont
œ	and the second shift	Peric
1	R. ADRTH J	z 9
2	S. AIYAPPAN	
3	G.S. AJAY PE	RASAN
4	K. AKASH	
5	G. AKSHAYAL	akshi
6	A. ARAVIND	
7	A.B. AVUDAIA	ABDAN
8	A. BAKIYA LE	KSHD
9	M. BAIAKRISH	NAN
10	S. RAVYA	
11_	T. BHAVATHAR	ANI
12	P. DEFPIKA	-
13	S . DEVIPRIYA	
14	G. DHARANI	
15	J. DIVAKARAN	
16	T. ELBYADHAR	HINI
17	J. FASILA AFRE	FN
18	M. GOKUL	
19	A. COMATHI	
20	P. GOPINATIH	-
21	K. GOVINDHAR	ATA
22	K.KAMALI	the second
23	K-KANISHKAR	
24	N. KARKUZHALI	
25	R. KORTHIKA	
		1.1

		-						1		
No.	12	16	16	lb	19	24	1	10		
Roll No.	1)	11	11	11	И	11	12	12		
	d	4	54	6	1	415	415	1-3		
1	1	1	1	1	1	l	1	1		
2	1	1	1	1	1	1	1	1		
3	1	1	1	11	1	1	1	1		
4	J	1	1	1	1.	1	1	1	L	
5	1	1	1	1	1	1	1	1		
6	A	1	1	1	1	1	1	1	T	à.
7	1	1	ι	l	1	1	1	1		
8)	ι	1	L]	1	1	1 :		
9	1	l	1	t	1	1	1	1	1	
10	1	t	l	t	1	1	/	1		13
11	1	1	1	t	1	1	,	1	r - 1	
12	1	1	1	1	1	1	1	4	1	100
13	1.	1	1	l	1	1	1	1	2	14
14	1	1	l	1	1	1	1	1		+
15	t	1	1	1	J	1	1	1		
16	1	t	1	1	1	1	1			-
17	1	,	1	1)	1	1		A sub-	
18	1.	1	1	1	1	1	1	1	1	
19	1	1	1	1	1.	1	,.	J.		3
20	1	1	i	1	1	1	,	1		1
21	1	7	1	1	1	1	1	1	100	5
22).	7	ì	1)	1	1	1		- 5
23	1	1	1	1	1	1	1	1		
24	1	1	t	1	1	1	J	1		
25	1	1	1	1	1	1	1	1		

Att	endance P	arti	cular
Roll No.	Name	A T	Date Mont Peric
1	R. DORTH	2d	4. 1
2	S. ALYAPP	PAN	
3	G.S. ATA	1 9	A GRAN
4	K. BKASH	. ar	
5	G. AKSIJA	YELL	AKSHI
6	A. ARAVI	NO	
7	A.B. AVU	DBJE	(PPON)
8	A BAKIYE	A LE	KSHD
9	M. BALAK	RICH	NAN
10	S. BAVYA		
11	T. BHAVAT	HAR	ANI
12	P. DEFPIK	A	
13	S . DEVIPR	NA	A
14	G. DHARD	11	
15	7. DIVAKA	RAN	
16	T. ELBYAD	HBR	SHINI
17	J. FASILA	AFR	EFN
18	M. GOKUL		
19	A. COMPTH	11	
20	P. GOPINA	ΕΠ	and a
21	K. GOVIND	HAR	ATA
22	K-KAMALI		- 24
23	K-KONISH		
24	N. KARKUZ		
05	R. KARTHI	1200	

No.		_	-	-	-			3			1
Roll No.			-		-					2.6	
										14	145
1										Η	
2	•	1						1		2	
3										124	
4										X	T
5				. 1		ų			1	1	
6		-1			1					Η	12
7				Ť		j.	1		1		授
8	i.	1								8	
9		4				1				e	
10	E		i.	1.01		1.2		,	3 5	36	
11				1	1		1	ł		19	
12	-			.e		ł			l	λŦ.	11
13		1		1. S	-		*	1	Ĩ	狂	
14	1								1	st.	
15				1	j		1	1.42	-	Ŕ	
16	1 C			Ì	ę.		1	1	and the second	15	
17	1		1		4	1		(T	
18	i.	New Y		1			Ţ	1	1	T^{\prime}	
19		ADC D		į.	·	1	1		-	1J	8 · ·
20	-		1	1					5	Ç.	
21		f. i		-		1				NCW.	100
22		-			1 mar 1		/			S.	
23						1	1		1	\$.5	
24										2	
25	ą.								3	54	

Assign	men	it (Da				Atten	_	-				Tr	est				
Roll No.	Announcement	31.8.21-	1 1	3	- 102.6.81	7. A. 2021 N	5-11-2021 W	30-11-202A	AT-1	AT-II	AT-III						Over all Attendance
Ř	noi	17		Ì	120	202	100					D	ate	1 1	1.203	Ą	
	Submission	14.9.			B8.8.201	514-9-2021	01.8		21 9	23 0	25/1	212	- 6°	1	1977 1 - 1	đ	
1		50	50		12	13	Ŵ	8	26	05	11	15		1222			97
2		50	50		10	13	12	8	26	11	п	٦					95.5
3		50	50		11	13	11	8	26	90	15	8					85.5
4			50		11	tt.	12	8	25	AB	14	6			-		PB.
5		50	50		12	12	12	8	30	AB	36	13	1.4.1	e - 1	1		91-
6		50	50		10	11	11	7	27	05	19	AB		1	\$20°	1.	81
7		50	50	1	11	1)	1I	8	34	14	51	AB		27		\bot	91-1
8	1	50	50		1]	12	11	8	25	25	42	19	1	1.4.3	\bot	· ·	93.
9		50	50		U	11	11	8	30	01	40	23		1	\bot		91-
10		91 -	50		11	12	12	8	45	06	33	17		\bot			95
11	*	5	50		12	13	12	8	39	25	80	52					b
12	7	3	50		12	13	12	8	39	36	72	100		Tri.	an territoria da	1	b
13	4	50	50		12	13	12	8	40	27	72	61		14	1.2		10
14 4	1	50	50	-	12	11	11	8	34	03	65	32			\downarrow	1	P 3-
15	-	50	50	30	12	11	10	8	28	AB	14			4	_	1	91.
16	11	50	50		11	12	11	8	28	PB	37	13			1	1	93
17		50	50		11	13	12	8	10	AB	75		<u> </u>	\downarrow	\downarrow	-	97
18	1.	50	50		11	12.	11	8	27	BB	19	-	-		1	:	93
19	1	50	50		11	n.	10	8	25	AB	16	6				1	8
20	ę .m	50	50	-	12	12	12	8		AB			•	\bot		14	91
21	1	50	50		12	11	12	8	28	PB		9		\bot	1		9
22	1	50	50		9	12	12	8	36	17	61	3)				1	9
23		50	50		10	12	11	8	27		26	7			\perp	1	9
24		50	50		12	13	12	8		- 11	23	3 26				1	1
25		50	SO		10	12		8	23	SAB	5 50	3			-		٥

Attenda	nce Parl	iculars		Τ.	T	T	5	16 2	77	31	1	2		-	14		ö	8	9	14	15	16	17	23 2	24 2	8
c l		Date			4-	4	-	-	-	8	9	-	3	2			Roll No.	9	9	9	9	9	9	90	99	
Roll No.	Name	Month		8		-	_			3		9	-+-	2			R.	1	B	3	1.	5	4	14	4 3	3
8		Period		5	3	+	-	<u>}</u>	t	,	-	5	4	3			26	1	1	1	,	A	,	,	,	,
26 A. N	IOHAMED	YASIR			+		-#	$-\mu$	+	4	4	4	A	1			27	1	1	1	,	,	,	1	,	,
	NURALIDHE			1			+	4	+	4	4	4	41	1			28	1	1	,	,	,	1	7	A	L
	NENDHINI		Ge/	A	-	4	/	//	+	1	4	4	11				29	1	1	,	,	,	Ť	,	A	7
	AHTINA	1 4 S	L.	1	1	1	1	1	+	M	4	4	1				30	1	1	,	,	٨	1			7
	RIVEDHAR	INI	2	1	/	1	1	1	-	4	4	1	11				31	,	1	,	,	A	1	7	1	,
	AMAKRIS		5	1	1	1		1	4	1	4	4	11	,			32	·	1	,	,	,		7		7
	ETHINAR		9	1	1	1	1	1	1	_	1	1	11				33	,	-	,	,	7	1	1	Á	
33 R.S	ACHIN		N-1	1	1	1	1	1	1	-	1	1	11	,	5		34	A	1	,	1	7	Á	1	7	,
34 T. ST	нзита			A	1	F		1	1	1	1	1	1		·		35	<u>n</u>	-	,	$\frac{1}{2}$	<u>,</u>	1	Ť		, ,
35 S. S	ELVABHAR	HTH		1	1	1	1	1			1		1		7		36	(1	,	$\frac{1}{2}$, †	1	7	<u>_</u>
36 m. S	HAKTHIVE	- Karata	1 C	1	1	1	1	1	1	ł		1	1		1		37		-4	1	,	<u>'</u> ,†	<u> </u>	$\frac{1}{7}$	/	Γ,
37 G.S	NA		e	1	1	1	1	1	1	1	1	1	1				38	^	-/		,	$\frac{1}{2}$;†	-	′ †	-
38 9.9	VORANTAN	n à da ser	2	1	1	1	1	A	1	' /	1	1	1				39	11	/	-	<u>/</u>	$\frac{1}{2}$	7	+	1	4
39 S.SU	GUNA	a da Na pa		·1	A	1	1	1	1		1		1		-		40	1	$\mathbf{\Lambda}$	4	4	<u>'</u>	$\frac{1}{2}$	-	<u>'</u>	
10 J. Su	RESH KAR	THIK	and and	1	1	1	1	1	1	. ,	1		A /		THE R		40	,	A	4	4	1	-1	1	47	<u> </u>
	RUTH	in and the	54	1	1	1	1	1	1	1	1		1					L	/	1	4	1	4	4	7	4
2 A.Su		1 12 - 8		1	1	1	1	A	1	1	1	1	1				42	/	/	1	-	4	<u>/</u> +	1	4	4
3 S. SW	etha	1 1 : 0:	4	1	1	1	1	1	1	1	/	1	1			÷	43	1	/	1	1	1-1	+	4	4	-
	RANIKA	b have the	6	1	1	Ą	1	1	1	;	1	1	1				44	1	4	1	1	4	4	4	1	l
5 K.VA		3-8-16	3	1	1	1	1	1	A	1			1		- 19	s	45	()	-4	1	4	1	4	4	4	4
	GATA RAM	IAWAN 21	3	-1-	1	1	1	1	A	1	1	1	1			7001	46	1	-4	4	1	1	4	4	4	4
-	NESH	11 - 12		1	1	1	1	1	A	1	1	1	1	11			47	ι	/	A	1	-1	4	4	4	A
	ROMODHI	Hen		1	1	1	/	/	'	i	1	1	1				48	1	/	1	1	1	1	4		1
H . VISI			, 1	1	1	A	1	1	1	1	1		1				49	1	1	1	1	1	1	4	1	1
	TOTAL NO	OF STUDENTS	RESENT	45	44	45	12	40	44	16	10	45	41				50	47		45	_			451		1
		1	ABSTRT	4	5.	14	6	-10	5	25	2		2					2	2	4	31	15	3	4 1	4 2	1

		100 1 24	The state
		E. Fu	S. C. Law St.
	At	tendance Part	iculars
	ö	F REFERENCE	Date
	Roll No.	Name	Month
	æ		Period
The last	26		YASIR
	27	the second second second second second	
	28	A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OF THE OWNER OWNE	
	29	The second secon	A PLANT PROPERTY
	30	the second	
	31	E. RAM AKRIS	
	32	T. RETHING	RIVA
1	33	R. SECHIN	
	34	T. SATHISH	07111
	35	S. SELVABHAR	
	36	and statement of the statement of the statement	Theshalts
	37	G.SVA	2.3512-12-4
- 1	38	S. SWERENTEL	WE ALL SCREET
110	39	S. SUGUNA	DTULK
B	40	J. SURESH KAN	RINIS Cost
	41	S. SURUTHI	m terner Sal
in the	42	A.SURYA	A TEL OF
15	44	S. SWETHA	B THI BUARD
4	45	K. THERENIKA	3 . e. E
)á	46	K. VARUN S. VANGATA RAP	n (n in
	47	K.VIGNESH	
14	3.8.4.	M-VIKROMODHI	TUDAL
State of	STATE.		
100	50	A-VISINA	D OF STUDENTS
1. 12	1100	, IDTHL IN	U VE OIVIENIS

	9	30	30	01							-rog	- TARAFA		5.44	- Form										1
Pirtue.	Roll No.	9	9		10	1-1	-	-	13	20	21	1	i	2	2 2	3 3	TT.	28	29	2	3	9	10	11	
	R.	2	5	4	+	10	10	10	10	10	To		Roll No.	1	-	,	10	10	10	11	11	11	11	11	
	26	A			3	3	1	1	1	1	20		R	1	2		1	3	۱	4	L	2	1	3	
	27	1		TF	1	4	1	4	4	1	15		26	T	/		1	1	1	1	1	t	1	1	{
	28	+	+	11	4	1	1	1	1	I	N		27	T	/	1	1	1	1	1	1	1	1	1	$\left\{ \right.$
	29	1	1	1	1	1	11	1	4	1	31		28			4	1	4	1	1	1	1	1	1	$\left\{ \right.$
	1	1	1	++	1	1	1	1	L	1	2e		29				1	1	1	1	1	1	1	1	+
	30	4	11	1	1	1	1	1	1	1	E		30		i	1	1	1	1	1	1	1	1	1	+
1	31	1	1	1	1	1	1		1	1	1		31		l		1	1	1	1	1	1	1	1	+
	32	1	1	i	i	1	1	1	1	1	1		32	2	t	1	1	1	1	1	4	1	1	1	-
	33	1	1	1	A	1	1	A	1	1	Ţ		33	3	1	1	1	1	1	1	1	1	1	+	4
	34	1	1	1	A	1	1	1	T	í	E		34	ŀ	l	1	1	1	1	1	1	1	+'	1	-
	35	1	ł	1	1	1	1	1	1	1	J.	- T	35	5	1	1	1	1	1	1	1	\downarrow	4	4	4
	36	1	1	1	1	1	1	1	1	1	E		36	3	1	1	1	1	1	1	/	4	-	4	4
	37	1	1	1	1	1	1	4	1	1	1		37	7	1	L	1		1	1	1	4	1	4	4
	38	4	4	1	1	4	1	1,	1	1	31		38	3	1	1	1	1	1	1	1	1	1	4	4
	39	1	1	1	1	1	1	Ţ	T	1	1		3	9	1	1	1	1		4	4	/	4	4	4
	40	Ĩ	1	1	1	1	1,	T	1	T	A		4	0	l	t	1		1	ı	1	1	1	1	1
	41	1	1	11	1	it	1	1	T,	1	13		4	1	,	1	1	1	1	1		1	4	(1
	42	1	1	1	1	1	T	1,-	T	1,	34		4	2	1	1			1	1	1	/	1	1	1
		1	1			1	1,	1	T,	T	1		4	3	1	1			1	1	1	1	1	(1
	43	+	1	1	11.	A	1-	t	1		H		4	4	1	1		1	1	1	1	1	1	0	1
	44	1	1	1	1	100	7	T.	T	1				5	1	1		r	(1	1	1	1	1	1
	45	A	1	1	1	1	-	1	11	Ť.	1	1.50	4	6	,	1	T	(1	1	1	1	1	1	1
	46	1	1	1	1	1	1	1	1	1	14	344	4	7	1	1	T	1	1	l	1	1	1	1	1
	47	1	1	11	1	1	16	11	11	1	4			18	1,	ľ	T	,	1	1	1	1	ſ	1	1
Ī	48	1	1	1	1	1	11	L	Ľ	1	4		-	19	Í	i	+	-+	A	-1	1	1	1	1	A
f	49	11	1	11	1	1	1	1	1	1	4			50	49	-	-	-		47	49	49	49	49	48
t	50	45	49		7,1	45	46	47	47	49	49	101	Ľ		D	4			51	37	2	-	-	-	1
L		11	0	3	212	24	3	2	2	D	U							~							

Atte	endance Particu	lars	2		
ö		Date			
Roll No.	Name N	Ionth			
Ř	F	Period			and the
26	A. MOHAMED YF	SIR			atter of
27	N. MURALIDHAR		a ^l	1.5	Contraction of the
28	J. NANDHINI	51 11	\$1.	i	4
29	P. PAVITHA	the second	2	19 10 - 19 19 10 - 19 19 10 - 19	· Pat
30	E. PRIMPOHARSH	INI	1		1
31	E. RAM AKRISH	VAN	1	24	4
32	T. RETHINA PRI	#	ż		-
33	R. SPCHIN		4	1. ¹⁹	
34	T. SATHISH	d to and the		19. J.	-
35	S. SELVABHARA	THI	6.4		
36	M. SHAKTHIVEL	101	1.	P.C	-
37	GISIVA	L DES	V		1
38	S. SUPRANTAN	6 25	T.		P. A
39	S. SUGUNA	de sta	Q.	162	-
40	J. SURESH KARI	HIK	1 -	18 A.	
41	S. SURITHI	Le may	in an	151	1
42	A.SURYA	M .V. **		20%	-
43	S. SWETHA	15 71	S.	01	
44	K. THARANIKA	E He	Sec.	13	
45	K.VARUN	\$ 81	2	- · · .	
46	S. VENGATA RAM	ANAN	2	18	
47	K. VIGNESH	14	et .	r de La	
48	M. VIKROMADHI	THEN	14 - N	1 .	
49	A.VISWA	1. Teh	11		1
50	TOTAL N	DE DE	Stu	TIM	1

					I	1				
Roll No.	12	16	16	16	K	24	1	10		
Roll	1)	1)	1)	1)	1)	11	12	12		
31	1	4	5	6	1	485	485	1-3	1	
26	1		1	1	1	1	1	1		
27	1	1	1	1	1	1	1	1		
28	1	1	1	VI.	1	.1	1	1		
29)	A	A	A	1	1	1	1		
30	1	1	1	vl.	1	1	1	1	e. K	
31	1	1	1	1	1	1	1	1	1	11
32	1	1	1	t	1	1	ſ	1		
33	1	-1	1	1	1	1	1	1		1.8
34	1	1	1	1	1	1	1	1	Ł.	54
35	1	t	1	1	1	1	1	1		16
36	1	1	1	1	1	t	1	4		
37	1	1	1	1	1	1	1	1		A.,
38	1	1	1	1	1	1	1	1		04
39	1		1	1	1	1	1	í		τ. Σ
40	1	1	1	1	1	1	1	1		(p)
41	1	A	A	A	1	1	1	1		4
42	1	1	1	1	1	1	1	1		1
43	1	1	l	1	1	1	1			2 B
44	1	1	1	ι	1		,	1		
45	1	1	1	1	1	,	1	1		- J.
46	1	1	1	1	1	· r		1	1	5
47	1	1	1	1	1	t	1	-		-
48	1	1	1	1	1	t	1	-		_
49	T	1	1	1	1	.1	1			
50	48	भू	मा	47	49	49	-	49		-
ţ	١	2			4	2	• 1]		_	1

	endance Particulars
Roll No.	Name Month Period
26	A. MOHAMED YASIR
27	N-MURALIDHARAN
28	T.NONDHINI
29	P. PAVITHA
30	E-BUTTOHBRSHINI
31	E. RAM BKRISHNAN
32	T. RETHING PRIMA
33	R SPOHIN
34	T. SATHISH
35	S. SELVABHARATH
36	M-SHEKTHIVEL
37	G-SIVA
38	S. SUBRANTANI
39	S. SUGUNA
40	J. SURECH KARTHIK
41	S. SURUTHI
42	A-SURYA
43	S. SWETHA
44	K-THARANIKA
45	K-NARUN
46	S. VENGATARAMAN
47	K-VIGNESH
48	M-VIKROMADHITHON
	A-VISWA ACCO
50	TOTAL NO OF

Roll N				-	-	-	-				
	6					\vdash		12			
26				-		-					
27						-			-	25	
28			-	\vdash	-	-				2	
29		1	1		4	-				Jas-	
30	a line			-	12.3		-	-			
31					-	\vdash	-		-	26	12
32		-1		-4		-		-			
33						-	-	10	in	22	
34		1	+	1				-	~	28	
35	i-		-	4			-	-			
36		-	1	4	1	1			- the	385	
37		1	-+		-4		.h.	3		1.6	
38	Sector -	1	1							۶C.	
39		4	-	+	·h		-	1		EG.	4
40	i la	S.,	÷	-7··	+		-	4	5-	167	
41	E.	· Star		2	-	q	÷ -	p.	4 -	1977. 1977.	
42	-	n ille e		-	d		1 -		ş	2.1	
43	-	4-	4	1 41	1	3 	4	2-1	;	1-1	
44	1	-	÷.	d II	т. Т.		-		+)
45			4	5	; -	2			-	44	5
46	3	1			1		s		8 1		
47	1.00	1		1.1	\$)-1	-		1	24	
48		a.t.			-		_		1 T	24	
49	1. 4	1	1		1	-	1	-	1	8	
50		199.00			6	2	h mare	hard and her			

Assig	nmer	nt (D	ate)			Atter	ndan	ce		Test						
Roll No.	Announcement	31.8.21 -	2	3	13.9.21	7.10.21 2	5.11.21 0	30.11.21 4	AT-I	AT-II	AT-III					Over all
Ř	Submission	14.9.21			E 18 8 21	E14.9.21	00	er 6.11.21	21 9	23 10	25	Da 27 12	te			
26	50	50	50		11	11	12	8	26	17	24	15		+	-	RG
27	1.00	50	50		12	13	12	8	28	15	46	20	-	-+		15
28		50	50	14	11	12	11	8	37	15	62	21	\rightarrow	+	-+	93-
29		50	50		U	12	12	5	42	14	38	24		+		cs.
30		50	50		12	12	12	8	33	9		20	-	+		97:
31		50	50		12	12	12	8	28	19	43	IT	-	+		97.
32		50	50	-	12	13	N	8	30	AB	35	11		+		97.
33		50	50	t	12	10	11	8	28		2)	\vdash	-	+		88
34		50	50		9	11	12	8	25	AB	57	AB		+	-	
35		50	50		11	13	12	8	25		10	8	-	+	-+-	97.
36		50	50		11	13	12	8	28		38	24		+		17
37	}-	50	50		12	13	12	8	26	6	26	1)		-		10
38	-	50	50	-	10	13	12	8	33	11	50	25		+	-+-	95
39		50	50		11	13	12	8	41	25	60		-	+		87.
40		50	50		9	13	12	8	32	AB		3		-		93.
41		50	50	-	12	13	12	5			63		-	+		93.
42	e	50	50		11	13	12	8	37	-	64	33		+	+	91
43		50	50		12	13	12	8	39	35		50		+	+	18
44		50	50		1)	12	12	8	34	AB	-		-	+	+	95 B
45		50	50	4	1)	12	11	8	28	AB			+	+	-+-	
46		50	50		11	13	12	8	30	05				+	+	9.
47	-	50	50		11	11	12,	8	28	03		6		+	-+	15
48		50	50	~	12	13	12	8	31	8A	57	50	+	+	-+	93
49		50	S,		11	13	11	17	29	PB	AB.	2		+	+	
50	1	3	T		-										= = > 2	6 A

Students Academic Assessment Details

Assignment (Date)							dan		dance Test								
Roll No.	Announcement	1	2	3	1	2	3 392	4	AT-I	AT-II	Math						Over all Attendance
Ř	ssion		1									Da	ate				-
- percenti-	Submission	*) a t	-	a konstanti	in the second	i forma	1-1-1		21 9	<u>23</u> 10	<u>25</u> 11	27 12	•				
51	4		·		あけ	<u>B</u> _	11-2	4	-)	10	1.2. 1.	-478		US.	30	RI	
52		L											T I		2 2.	han	
53		i.	4						_							-	
54	Mor in		1			J.J.J.		-P-	(273)	i .	Lu:	(7月月)		14	233	filmer "	-
55	** 1	- Anna	1 - 4 -										1			4	-
56	5	1									alland and the		-				\vdash
57		4					w	- Sector - Land	n der E		W. A.	Albert 1	1 ····	-1.J.,	the We	the the	-
58	· · · · · · ·				1.00	-		·	1.00	-			A STATE				-
59	- pul	1	1 1			1		14	9.50				1				-
60		1							5 1 21	11.14		41		11 marine	an an an the	~ ~ ~ (-
61	· ······	p	· · · · · ·		-			1.12				94 1980 - 1990	l. Deserves		-		-
62	the contract	-	ill	. Ann	6.7.7	Les.			-24	γ. 4	-	2710	1. 1.		-		
63		1	I	1						10	1.11		1	10			
64		1	T	• •	shired ana		-	-		and space and	100 m			1			
65	2	1						- Sector	. Jabo	and and		1 Ex		38.	a)	181	\vdash
66			1	1	-										100 - 100 - 1		\vdash
67									1					- Marian Japan	Pré-C-Aut-		+
68	-				dan' -			· 5.	1.1	to ft	i sans de Second	12	4	13	· 1.	1.1	
69			1														1
70						T.n.										1	1
71			No. The second	ET	a in anytem	n iden	in makibali	a in the second	e - elerid	-taking		ZL.	- 7 to	0	the start of	111	
72	-		j Lingaro,									-					
73	3	1	1	1 1.889	entin	1	17.	1	1 11 22						8.4	14	
	Pa	ssed		1.1.22	168.04				4.9	8	19	٦		i afaar	- en es	aliter a	
No. of	Pa	ss%	1	-	ini	15-111 1	an internet	loc	136	26.F		15.2	N 11 - 1 - 2			ment	
Students	Be	twee	en 6	0 to 8	30						11	-		\vdash		3	-
1. Leaker	Ab	ove	80								0	2		40. ² [16 × 1		

	and the second	RECORD OF CLASS WORK			\square	224
Unit No.	Date	TOPICS COVERED	PERIOD		STAFF INITIAL	
Ì	the end of the second s	The second second				
	19.08.2021	INTRODUCTION TO EDRMAL PRODE	5	1		
	24.08.2021	ADDITIVE FORMS OF PROOF	3	2		
	25.08.2021	INDUCTIVE PRODES	1	3		
	26.08.2021	FINITE AUTOMATA	5	4		
	27.08.202)	DFA	4-	. 5	848	8
	31.08.202)	NFA	3	6		
	1.9.202)	NFA - PROBLEMS.		7		
	0. 2. 09. 2021	FINITE AUTOMATA WITH 2-TRANSITIONS	5	8	8	
1	03,09,2021	FINITE AUTOMATIA WITH E-TRANSITION "	4	9	2-5\$	X
	Hours Planned			s Handled	H	

61		RECORD OF CLASS WORK	1. Sec. 1.			
	Date	TOPICS COVERED	PERIOD	CUMULATIVE	STAFF INITIAL	HOD INTIAL
	C 1 4	12. All Marian Congel & Maria	1.200	1	10° 1	
	<u>1.9.2021</u>	REGULAR EXPRESSIONS.	3	10	¢	7
the second secon	8.9.2021	REGULAR EXPRESSIONS - Representation	1	11	Ø	1
	9.9.2021	TA L' Royular Expressions - Riller formula	2	12.	8	i C J
interestion which	14.9.2021	FA , Regular Expressiony - Thomson	3	13 13	V.	200
in a sugar	15, 9, 2021	Construction Method FA > Regulas Expression - State	A	140	&	N.
any some fation	16.9.2021	Elimination, Arden's theorem Proving Languages not to be regular	1	15	B	0
- Parate and a second a second	17.9.2021	closure properties of Rogular language	4	16	8	
1	23,9,2021	Forminlence & minimization of Automota	1 1 1 1	17 .	Ð	
ages reserved	24.9.202)	Equivalence 2 Minimitation of Automata	4	18	Ø	5 8 2

		OF CLASS WORK			- C
		RECORD OF CLASS WORK		111	\square
Unit No.	Date	TOPICS COVERED	PERIOD	CUMULATIVE PERIOD	STAFF INITIAL
1	28,9,202	Context Free Common	B	19	
	DE AT L.	a company and shares	A	a pri p	
	0.9, 9, 207)	Context Free Gramman	1	20	8
	Set HTS	and tradition of an an opticity is shown	1.4	time :	
	30.9.2021	PARSE TREE	2	21	8_
	. (. f	2 . A. J. Mailwood could b		toy V . t	. 1.
~ ~	30,9.2021	AMBIGUITY IN GROMMARS L			
	dit stills	ST MANNER MANNER ANGUAGES	5	207 P	2
TIL		ralient contention			
2	01-10-2621	DEFINITION OF RUSH DOWN AUTOMATA	F	23	8-80
2	05-10.2021	LANGUAGES OF A PDA	3	24	8
in the second	07-10-2021 208-10-		30	25	82
	07.10-2021	EDUINAIENCE OF PDA 2 CFG		25	8
	08.10.2021		1	26	B
	19.10.2021	DETERMINISTIC PUSH DOWN AUTOMOTO	3	27	8.82
2	2 2 6	i multiminen 2 multimi	7	ann B	H.C.
	Calls Provide Action	1 Steel filt			
	Hours Planned			s Handle	1.9

	$\label{eq:stars} (x,y) = \frac{2\pi i (x,y)}{2} - \frac{1}{2} \log \log (1/2) \operatorname{Holes} \log (1/2) - \log (1/2) \operatorname{Holes} \log (1/2) + \log (1/2) + \log (1/2) \operatorname{Holes} \log (1/2) + \log (1/$	RECORD OF CLASS WORK				
Unit No.	Date	TOPICS COVERED	PERIOD	CUMULATIVE	STAFF INITIAL	HOD INTIAL
		NORMAL FORMS FOR CEG.	4		L .	
1	13.10.2021	in SIMPLACATION DE CEG	1	28	8	
	20.10.2021	(ii) CHOMSKY NORMAL FORM		29	8	
	21.10.2021	LIN GREIBACH NORMAL FORM	2	30	8	ŧ
a second and the	2.10:202)	PUMPING LEMMA FOR CFL	1	3	æ	
the	23.10.202)	PLOSURE PROPERTIES OF CFL		32	8	.9
N	27.10.202)	TURING MACHINES		33	8	-
i anna a faca	28.10-202)	H 1)	3	34	8	1
	29.10.202)	PROGRAMMING TECHNIQUES FOR TM		35	8	te
2	2.11.2021	n yest and north	4	36	8	
	a to particular and the second data		100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1
And the second	(i)			tanan a darama ana a		1
	The second secon		end a second control of the second control o	a na an	100	-
1.000	Hours Plann	ned. 0	Hour	s Handled	1:9	_

		RECORD OF CLASS WORK	-			
Unit No.	Date	TOPICS COVERED	PERIOD	CUMULATIVE	STAFF INITIAL	HOD INTIAL
The state	03.11.2021	Now RECURSIVE ENVOLER PRIE LANGUAGE	24	- 37	æ	
	09.11.2021	DIAGONALIZATION LANGUAGE	2	- 38		
	10-11-2021	UNDECIDABLE PROBLEM WITH RE		- 39	8	
	11.11.2021	UNIVERSAL TURING MACHINE	3	40	æ	$\left \right $
	12.11.2021	UNDECIDABLE PROBLEM ABOUT TM	1	41-	8	33
J.	16-11-2021	RICE THEOREM TO 27109 PURCH AND	4	<u>ц2</u>	æ.	
	16.11.2001	POST CORRESPONDANCE PROBLEM	526	in Artiste	8	1
15	35	MI and 23 Walk 10 HT Data The	il .			
	19.11.2021	THE CLASS P AND NP	-	ligs-li.	8,	. 5
and the second sec				le dana (A second second
					Approximity	to the second
	Hours Planned:	9 H	ours I	landled:	9	

KINGS COLLEGE OF ENGINEERING

CONTINUOUS ASSESSMENT TEST – I (SEPTEMBER 2021)

CS8501 – THEORY OF COMPUTATION

Class : III CSE Maximum Marks : 50 Date & Session : 21.09.21 & AN Time : 2.00 PM - 3.30 PM

Answer all the questions PART – A (5 * 2 = 10)

- 1. Illustrate the concept of Finite Automaton.
- 2. What is the principle of mathematical induction?
- 3. Compare DFA and NFA.
- 4. What is meant by regular expression?
- 5. Outline the theorem of pumping lemma for regular languages.

<u>PART – B (2 * 13 = 26)</u>

6. a.(i) Given ∑= {a,b}, construct a DFA which recognize the language L={b^m abⁿ: m, n>0}
(6)
(ii)Determine the DFA from a given NFA M=({q₀, q₁}, {a,b}, δ, q₀, {q₁}) with the

state table diagram for δ given below. (7)

δ	а	b
->q0	{q0,q1}	{q1}
* q1	\bigcirc	{q0,q1}

b. (i). Prove that if $x \ge 4$ then $2^x \ge x^2$ (6) (ii).Consider the following ε -NFA for an identifier. Construct equivalent Deterministic Finite Automata. ε (7)

- b.i. Deduct the ε NFA with epsilon for the Regular expression(a|b)^{*}ab (6)
 - ii. Examine that $L=\{a^p \mid p \text{ is a prime}\}$ is regular or not (7)

<u>PART - C (1 * 14 = 14)</u>

8. a. Construct a DFA equivalent to the NFA $M=(\{p,q,r,s\},\{0,1\},p,\{q,s\})$ where δ is given by, (14)

δ	0	1
→p	{q,s}	{q}
* q	{r}	{q,r}
r	{s}	{p}
*S	-	{p}

(OR)

- b.i. Test the following by the principle of induction $\sum_{k=1}^{\infty} \frac{k^2 = n(n+1)(2n+1)}{6}$ (7)
 - ii. Test for every n>=1 by mathematical induction $\sum^{n} i^{3} = \{n(n+1)/2\}^{2}$ (7)

PART	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6
Α	2,4	1,3,5				
			6.a.i &			
			6.a.ii			
В			6.b.i &	7.a.ii &		
Б			6.b.ii	7.b.ii		
					7.a.i &	
					7.b.i	
						8.a
С						8.b.i &
						8.b.ii
Total	4	6	13	7	6	14

ANNEXURE - I KINGS COLLEGE OF ENGINEERING CONTINUOUS ASSESSMENT TEST – I (SEP '2021)

College Code	8		2	1		1						
College Name	Kin	as i	مالع	اع	oF	Eng	inceri	ng				T
Register Number	8	2	1	í	1	9	l	0	4	0	0	8
Name of the Candidate	A.E	A.B. Avudaiappan										
Degree		B·E										
Branch	CSE				Semester V							
Subject Code	С	Т	s	8	Т	5	0	1				
Subject Name	T	ieory	oF	compu	Jahi	00				_		
Date	2		9	21		Sessi	on	F	⁻ N		AN	5
No. of Pages used	5			In we		Five			_			
All pa	rticular	s giver	abov	e by me	are v	erified a	nd foun	d to be	correct	t		
Signature of the Student			And	21/9/								

For Office Use Only

P

F

Instruct	ions to	the Candid	late: Put	Tick ma	rk (√) fo	or the quest	tions at	tended in the	e tick mark co	lumn against each question
	ART -						Т-В			
Question No.	~	Marks	Quest	tion No.	()	(i) Marks	(ii) ✓	(ii) Marks	Total Marks	Grand Total (in words)
1	5	2	6	a						(III WOIDS)
2	5	20	Ů	b		9				
3	5	2	7	a					I	The ford .
4	~	2		b	~	7	S	6	18	Three fors.
5	S	2	8	а			_			
				b	2	8		3	873	
				·						
										Grand Total
										<u> </u>
										34
Total		10							24	1
Declarati	on by t	he Examiner	: Verified	that all t	the ques	tions attend	led by t	he student ar	e valued and t	he total is found to be correct
39	pl91 Date	2021			~	and WOM			1	No Rundary

Department of Computer Science & Engineering Academic Year 2021-22 / ODD Semester Sub Code/Subject : CS8501 / Theory of Computation

Class / Sem : III / V Sub Code/Sul Subject Incharge : Ms.S.Puvaneswari

uvaneswari Date of Exam: 21.9.21 Continuous Assessment Test - I

R.No	Reg No.	Name of the Student	CAT-I (out of 50)
1	821119104001	Aarthi. R	36
2	821119104002	Aiyappan. S	26
3	821119104003	Ajay Prasanna. G S	26
4	821119104005	Akash .K	25
5	821119104006	Akshayalakshmi. G	30
6	821119104007	Aravind. A	27
7	821119104008	Avudaiappan .A B	34
8	821119104009	Bakiya Lakshmi .A	25
9	821119104010	Balakrishnan. M	30
10	821119104011	Bavya. S	45
11	821119104012	Bhavatharani .T	39
12	821119104013	Deepika. P	39
13	821119104014	Devipriya. S	40
14	821119104015	Dharani. G	34
15	821119104016	Divakaran. J	28
16	821119104017	Elayadharshini .T	28
17	821119104018	Fasila Afreen .J	40
18	821119104019	Gokul .M	27
19	821119104020	Gomathi .A	25
20	821119104021	Gopinath. P	28
21	821119104022	Govindharajan. K	28
22	821119104023	Kamali. K	36
23	821119104024	Kanishkar .K	27
24	821119104025	Karkuzhali. N	25
25	821119104026	Karthika. R	33
26	821119104027	Mohamed Yasir. A	26
27	821119104028	Muralidharan. N	28
28	821119104029	Nandhini. J	37
29	821119104031	Pavitha .P	42
30	821119104032	Priyadharshini .E	33
31	821119104033	Ramakrishnan .E	28
32	821119104034	Rethinapriya. T	30
33	821119104035	Sachin .R	28
34	821119104037	Sathish .T	25
35	821119104038	Selvabharathi. S	25
36	821119104039	Shakthivel .M	28

R.No	Reg No.	Name of the Student	CAT-I (out of 50)
37	821119104040	Siva .G	26
38	821119104041	Sivaranjant.S	33
39	821119104043	Suguna. S	41
40	821119104044	Suresh Karthik .J	32
41	821119104045	Suruthi. S	39
42	821119104046	Surya. A	37
43	821119104047	Swetha. S	39
44	821119104048	Tharanika. K	34
45	821119104049	Varun. K	28
46	821119104050	Vengatramanan. S	30
47	821119104051	Vignesh. K	28
48	821119104052	Vikiramadhithan .M	31
49	821119104053	Viswa .A	29

Staff Incharge

C

C

30/9 HOD

KINGS COLLEGE OF ENGINEERING

CONTINUOUS ASSESSMENT TEST - II (OCTOBER 2021)

CS8501 – THEORY OF COMPUTATION

Class : III CSE

Date & Session : 23.10.21 & AN

Maximum Marks : 50

Time: 2.15 PM - 3.45 PM

Answer all the questions

<u>PART - A (5 * 2 = 10)</u>

- 1. What are the closure properties of regular languages?
- Let ∑={0,1} and ∑¹={0,1,2} with h(0)=01 and h(1)=112. Find h(010) and homomorphic image of L={00,010}.
- 3. Write a Context Free Grammar for the language consisting of equal number of a's and b's
- 4. Give a formal definition of Push Down Automata?
- 5. Derive a string 'aababa' for the following Context Free Grammar (CFG) $S \rightarrow aSX|b$; $X \rightarrow Xb|a$

<u>PART - B (2 * 13 = 26)</u>

- 6. a. (i). Construct DFA for the regular expression 0(0+1)*1 (6)
 (ii). Minimize the number of states of DFA for the above regular expression (7)
 (0r)
- 7. b. (i) Construct DFA for the regular expression (00+11)*01(6)

(ii). Minimize the number of states of DFA for the above regular expression (7)

(13)

- 8. a. i) Build a PDA to accept {0ⁿ1ⁿ|n>1}. Draw the transition diagram for the PDA. Show by instantaneous description that the PDA accepts the string '0011'
 (6)
 - ii) Determine the pushdown automata that accepts { $\omega c \omega^{R} | \omega \text{ is in } (0+1)^{*}$ }. (7)

(0r)

b. (i) Prove that if L is N(M1)(Language accepted by empty stack) for some PDA M1,then L is N(M2)(Language accepted by final state) for some PDA and model it with suitable diagram.

(ii) Prove that if L is N(M1)(Language accepted by final state) for some PDA M1,then L is N(M2)(Language accepted by empty stack) for some PDA and model it with suitable diagram.

<u>PART – B (1 * 14 = 14)</u>

9. a. Assume M=({q0,q1},{0,1},{x,z0}, δ ,q0,z0) where δ is given by δ (q0,0,z0)= {(q0,xz0)}, δ (q1,1,x)={(q1, ϵ)}, δ (q0,0,x)={(q0,xx)} δ (q1, ϵ ,x)={(q1, ϵ)} δ (q1, ϵ ,z0)={(q1, ϵ)} Construct a CFG for the PDA. (14)

(0r)

b. (i) Convert PDA to CFG. PDA is given by P=({p,q},{0,1},{X,Z},\delta,q,Z), δ is defined by $\delta(p,1,Z)=(p,XZ)$, $\delta(p, \epsilon,z)=\{(P, \epsilon)\}$, $\delta(p, 1,x)=\{(p,XX)\}$, $\delta(q,1,X)=\{(q, \epsilon)\}$, $\delta(p,0,X)=\{(q,X)\}, \delta(q,0,Z)=\{(p,Z)\}$ (7)

(ii).Examine DPDA. Give example for Non-deterministic and DPDA (7)

PART	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6
А	1,3,4	2,5				
						6.a.i & ii
В						6.b.i & ii
В			7.a.i (6)		7.a.ii (7)	
			7.b.i(6)		7.b.ii(7)	
				8.a (14)		
С				8.b.i & ii		
				(14)		
Total	6	4	6	14	7	13

CONTINUOUS ASSESSMENT TEST-1/11/MODEL EXAMINATION

REGISTER NUMBER	821119104012	ROLL NO.	12
Nomber		YEAR / BRANCH / SECTION	II CSEDN

College Code & Name	8211 kings college of engineering
Degroa/Branch	BE-CSE
Subject Code	CS8501 Subject Title Theory of computation

Semester	V	All the particulars giv	en are verified
Date & session	23.10.21/00	Signature of the Invigilator with date	APRIL 2
No. of pages used	12	Name of the Invigilator	M·BA(A))

Г

Instructions to the candidates

1. You are prohibited from writing your NAME in any part of the answer book.	SPACE FO	DR MARKS
 You are prohibited from writing or leaving any distinguishing marks so as to identify your answer book. Use both side of the paper for answering questions (Except front page) 		
page).		
4. Check the regulation, Degree, Branch, Semester, Subject code and Subject Title of the Question Paper before answering the	36.	
questions.		
5. Possession of any incriminating material and Malpractice of any	50	100
nature shall be punishable as rules.	00	
6. No additional sheets will be provided.		
	Signature of the Ex	25/10/2) caminer with Date
Signature of the Student with Date after Evaluation		
P. Josephilas	S.	Piwaneswan
24/4	Name of the	e examiner

1	(ALCONTA)		(C	SC III PA PA
	404	Repaired by Attended to the tert		

Class / Sem : III / V Sub Code/Subject : CS8501 / Theory of Computation Subject Incharge : Ms.S.Puvaneswari Date of Exam: 23.10.21 Continuous Assessment Test - II

R.No	Reg No.	Name of the Student	CAT - II (out of 50)
1	821119104001	Aarthi. R	5
2	821119104002	Aiyappan. S	11
3	821119104003	Ajay Prasanna. G S	6
4	821119104005	Akash .K	AB
5	821119104006	Akshayalakshmi. G	AB
6	821119104007	Aravind. A	5
7	821119104008	Avudaiappan .A B	14
8	821119104009	Bakiya Lakshmi .A	25
9	821119104010	Balakrishnan. M	1
10	821119104011	Bavya. S	6
11	821119104012	Bhavatharani .T	25
12	821119104013	Deepika. P	36
13	821119104014	Devipriya. S	27
14	821119104015	Dharani. G	3
15	821119104016	Divakaran. J	AB
16	821119104017	Elayadharshini .T	AB
17	821119104018	Fasila Afreen .J	AB
18	821119104019	Gokul .M	AB
19	821119104020	Gomathi .A	AB
20	821119104021	Gopinath. P	AB
21	821119104022	Govindharajan. K	AB
22	821119104023	Kamali. K	17
23	821119104024	Kanishkar .K	6
24	821119104025	Karkuzhali. N	11
25	821119104026	Karthika. R	AB
26	821119104027	Mohamed Yasir. A	17
27	821119104028	Muralidharan. N	15
28	821119104029	Nandhini. J	15
29	821119104031	Pavitha .P	14
30	821119104032	Priyadharshini .E	9
31	821119104033	Ramakrishnan .E	19
32	821119104034	Rethinapriya. T	AB
33	821119104035	Sachin .R	• 5
34	821119104037	Sathish .T	AB
35	821119104038	Selvabharathi. S	AB
36	821119104039	Shakthivel .M	26

P

R.No	Reg No.	Name of the Student	CAT-II (out of 50)
37	821119104040	Siva .G	6
38	821119104041	Sivaranjani . S	11
39	821119104043	Suguna. S	25
40	821119104044	Suresh Karthik .J	AB
41	821119104045	Suruthi. S	AB
42	821119104046	Surya. A	26
43	821119104047	Swetha. S	35
44	821119104048	Tharanika. K	AB
45	821119104049	Varun. K	AB
46	821119104050	Vengatramanan. S	5
47	821119104051	Vignesh. K	3
48	821119104052	Vikiramadhithan .M	AB
49	821119104053	Viswa .A	AB

STAFF INCHARGE

1. 1.

S J 25/10 HOD

KINGS COLLEGE OF ENGINEERING MODEL EXAM (NOVEMBER 2021)

CS8501 – THEORY OF COMPUTATION

Class/Sem

Date & Session: 25.11.21 & FN

Maximum : 100

Time: 9.45 am to 12.45 pm

ANSWER ALL THE QUESTIONS

PART - A(10*2 = 20 Marks)

- 1. Define Finite Automata.
- 2. Outline the concepts of principle of mathematical induction.
- 3. What is meant by regular expression?
- 4. Summarize the definition of pumping lemma for regular set.
- 5. Build CFG for a signed integer constant in C

: III CSE / 05

- 6. Compare PDA acceptance by empty stack method with acceptance by the final state method
- 7. Illustrate the configuration of Turing Machine
- 8. Define simplification of CFG.
- 9. Identify the properties of recursive and recursive enumerable language.
- 10. Summarize the concepts of NP-hard and NP-completeness problem.

$\underline{PART} - B(5*13 = 65 Marks)$

11. a.(i). Prove the following by the principle of induction $\sum_{k=1}^{\infty} k^2 = n(n+1)(2n+1)$. (6)

(ii). P.T A language is accepted by some DFA iff L is accepted by some NFA. (7)

(OR)

b.(i). Assess a non-deterministic finite automaton accepting the set of strings over {a,b} ending in aba. Use it to construct a DFA accepting the some set of strings.
 (6) (i). Deduct into DFA for the following ε-NFA

	ε	а	b	С
→ p	{q,r}	Ø	{q}	{r}
q	ø	{p}	{r}	{p,q}
*r	Ø	Ø	Ø	ø

12. a.(i). Describe Arden's Theorem with an example.	(6)
(ii). S.T the set L= $\{0^{i2} i \ge 1\}$ is not regular	(7)
(OR)	
b.(i). S.T the set L={0 ⁿ n is a perfect square} is not regular	(6)
(ii).Illustrate the steps to Construct an NFA from the regular expression (($a b$)*a	(7)
13. a.(i). Construct a parse tree and compute left most derivation, rightmost derivation	for a
given input, (a+b) and a++	(7)
$I \rightarrow a b Ia Ib I0 I1$	
$E \rightarrow I E + E E^* E (E)$	
(ii).Construct a PDA that accept the given CFG: $S \rightarrow xaax$, $X \rightarrow ax bx \varepsilon$	(6)
(OR)	
b. (i). Solve that if L is N(M1)(Language accepted by empty stack) for some PDA M1	,then L
is N(M2)(Language accepted by final state) for some PDA.	(7)
(ii). Construct PDA for the language $L=\{ww^R w \text{ in } (a+b)^*\}$.	(6)
14. a. List the steps to convert the following grammar into an equivalent one with no u	ınit

productions and no useless symbols (Simplification of CFG) and convert into CNF form S-> ABA, A->aAA|aBc|bB,B-> A | bB | Cb,C->CC | cC (13) (OR) b. Show and explain in detail about programming techniques for TM (13)

15. a.Examine that L_{ne} is not recursive and also prove that L_{ne} is recursively enumerable. **(13)**

(OR)

b. Analyze the concepts about RICE theorem and Simplify L_u is RE but not recursive (13)

$\underline{PART-C(1*15 = 15 Marks)}$

16. a. Construct PDA from CFG. PDA is given by $P=(\{p,q\},\{0,1\},\{X,Z\},\delta,q,Z), \delta$ is defined by $\delta(p,1,Z)=\{(p,XZ)\}, \delta(p, \epsilon,z)=\{(P, \epsilon)\}, \delta(p, 1,x)=\{(p,XX)\}, \delta(q,1,X)=\{(q, \epsilon)\}, \delta(p,0,X)=\{(q,X)\}, \delta(q,0,Z)=\{(p,Z)\}$ (15)

(OR)

b. Write down the steps to provide solution to the PCP problem (15) The TM M={{q1,q2,q3},{0,1},{0,1,B}, δ ,q1,B,{q3}} where δ is given by δ (q1,0)={(q2,1,R)}, δ (q1,1)={(q2,0,L)}, δ (q1,B)={(q2,1,L)}, δ (q2,0)={(q3,0,L)}, δ (q2,1)={(q1,0,R)}, δ (q1,B)={(q2,0,R)} and input string w=01. Build the solution.

PART	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6
Α	1,3,8,10	2,4,6,7	5,9			
В	14.a	12.a.i. & ii	13.a.i & ii	15.a.i & ii	11.a.i & ii	
В	14.b	12.b.i & ii	13.b.i & ii	15.b.i ⅈ	11.b.i & ii	
С						16.a
C						16.b
Total	21	21	17	13	13	15

			<i>3</i>	
		AAC Accredited Institu LEGE OF ENGINEE nized under 2(1) & 12(0) of total to Anna University. Cl		
CONTINU		97	II / MODEL EXAMINATIO	DN
REGISTER NUMBER 82	11101		ROLL NO.	190511
		04012	YEAR / BRANCH / SECTION	III/CSE
College Code &	1 1 1 1 1			
Name	8211	KINGIS COLL	EGIE OF ENGINEER	ING
Degree/Branch	BE/OSE			
Subject Code	CS 8501	Subject Title	THEORY OF COMPU	TATION
			· · · · · · ·	
Semester	E		All the particulars given are verifie	d
Date & session	25.11.21 EFN	Signature of the date	Invigilator with	and active land
No. of pages used	20	Name of the Inv	vigilator	- Reverthe

SPACE FOR MARKS

10

Sl. hur

Signature of the Examine

S. Rwaneswan

Name of the examiner

Instructions to the candidates

1. You are prohibited from writing your NAME in any part of the answer book.

2. You are prohibited from writing or leaving any distinguishing marks so as to identify your answer book.

3. Use both side of the paper for answering questions (Except front page).

4. Check the regulation, Degree, Branch, Semester, Subject code and Subject Title of the Question Paper before answering the questions.

5. Possession of any incriminating material and Malpractice of any nature shall be punishable as nates.

6. No additional sheets will be provided.

Signature of the Student with Date after Evaluation

Department of Computer Science & Engineering Academic Year 2021-22 / ODD Semester Sub Code/Subject : CS8501 / Theory of Computation Ms.S.Puvaneswari Date of Exam: 25.11.21

Class / Sem : III / V Subject Incharge : : Ms.S.Puvaneswari

R.No	Reg No.	Model Exam Name of the Student	Model (out of 100)
1	821119104001	Aarthi. R	11
2	821119104002	Aiyappan. S	17
3	821119104003	Ajay Prasanna. G S	15
4	821119104005	Akash .K	14
5	821119104006	Akshayalakshmi. G	36
6	821119104007	Aravind. A	19
7	821119104008	Avudaiappan .A B	51
8	821119104009	Bakiya Lakshmi .A	42
9	821119104010	Balakrishnan. M	40
10	821119104011	Bavya. S	33
11	821119104012	Bhavatharani .T	80
12	821119104013	Deepika. P	72
13	821119104014	Devipriya. S	72
14	821119104015	Dharani. G	65
15	821119104016	Divakaran. J	14
16	821119104017	Elayadharshini .T	37
17	821119104018	Fasila Afreen .J	75
18	821119104019	Gokul .M	19
19	821119104020	Gomathi .A	16
20	821119104021	Gopinath. P	16
21	821119104022	Govindharajan. K	50
22	821119104023	Kamali. K	61
23	821119104024	Kanishkar .K	26
24	821119104025	Karkuzhali. N	23
25	821119104026	Karthika. R	50
26	821119104027	Mohamed Yasir. A	24
27	821119104028	Muralidharan. N	46
28	821119104029	Nandhini. J	62
29	821119104031	Pavitha .P	38
30	821119104032	Priyadharshini .E	36
31	821119104033	Ramakrishnan .E	43
32	821119104034	Rethinapriya. T	35
33	821119104035	Sachin .R	21
34	821119104037	Sathish .T	57
35	821119104038	Selvabharathi. S	10
36	821119104039	Shakthivel .M	38

R.No	Reg No.	Name of the Student	Model (out of 100)
37	821119104040	Siva .G	26
38	821119104041	Sivaranjani . S	50
39	821119104043	Suguna. S	60
40	821119104044	Suresh Karthik J	39
41	821119104045	Suruthi. S	63
42	821119104046	Surya. A	64
43	821119104047	Swetha. S	80
44	821119104048	Tharanika. K	35
45	821119104049	Varun. K	30
46	821119104050	Vengatramanan. S	35
47	821119104051	Vignesh. K	51
48	821119104052	Vikiramadhithan .M	57
49	821119104053	Viswa .A	AB

Staff Incharge

8 5 26/ 41 HOD

KINGS COLLEGE OF ENGINEERING

MODEL EXAM - II (DECEMBER 2021)

CS8501 – THEORY OF COMPUTATION

Class/Sem	: III CSE / 05	Date & Session: 27.12.21 & FN
-----------	----------------	-------------------------------

Maximum : 100

Time: 9.30 am to 12.30 pm

ANSWER ALL THE QUESTIONS

PART - A(10*2 = 20 Marks)

- 1. State any four ways of theorem proving.
- 2. What is meant by proof by contradiction?
- 3. Identify the applications of Regular Expression
- 4. What are the closure properties of regular languages?
- 5. What is meant by Context Free Grammar?
- 6. List down the different types of languages accepted by DPDA.
- 7. Outline the steps for pumping lemma for CFL.
- 8. Infer the Instantaneous description of TM.
- 9. What is the measuring complexity for NFA?
- 10. Define PCP or Post Correspondence Problem.

<u>PART – B (5*13 = 65)</u>

11. a.(i). Prove that if $x \ge 4$ then $2^x \ge x^2$ (7)

(ii).Prove every tree has 'e' edges and 'e+1' nodes. (6)

(OR)

b.(i).Deduct ε-NFA to DFA

(ii). Construct a non-deterministic finite automaton accepting the set of strings over {a,b} ending in aba.(6)

90

(7)

12. a. Show that the regular language are closed under:

- a. Union
- b. Intersection
- c. Kleene Closure
- d. Complement
- e. Difference

(OR)

b. Build the finite automaton for the regular expression $(0+1)*0(0+1)*$	(13)
13. a.(i).Outline the steps to construct a pushdown automata to accept the	language
L={a ⁿ b ⁿ /n≥1} by empty stack	(6)
(ii).Explain that there is a parse tree with root A and with yield w, then	there is a
leftmost derivation A => w in grammar G	(7)
(OR)	
b (i) if C is the grammar $S \rightarrow S h S \mid a$ show that C is ambiguous	(6)

b.(i). if G is the grammar S→SbS | a show that G is ambiguous (6) (ii). Illustrate the steps to construct a PDA accepting {aⁿb^maⁿ | n,m >=1} (7)

14. a.Elaborate the steps to convert into Chomsky Normal Form (CFG) equivalent to the
grammar G with the productions P given.(13) $S \rightarrow aAbB, A \rightarrow aA | \in, B \rightarrow bB | \in$

(OR)

b. Design a Turing machine to accept language L={0ⁿ1ⁿ/n>=1} and simulate its action on the input 0011 (13)

15. a.(i). Solve that if a language is recursive iff it & its complement are both RE (7)
(ii).if L is a recursive language so is complement of L (6)

(OR)

- b.(i).S.T L_u is recursively enumerable (7)
- (ii).S.T modified PCP reduces to PCP (6)

PART - C(1*15 = 15)

16. a. Examine in detail about Class P and NP with an example
(Or)(15)
(15)b.Simplify the following grammar into GNF
 $S \rightarrow AB$, $A \rightarrow BS | b, B \rightarrow SA | a$ (15)

(13)

PART	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6
A	1,2,4,5,6,9,10	3,7,8				
	11.a.i & ii	12.a	13.a.i & ii			
В	11.b.i.& ii	12.b	13.b.i & ii			
В		15.a.i & ii	14.a			
		15.b.i & ii	14.b			
С				16.a		
				16.b		
Total	27	32	26	15		

CONTINUOUS ASSESSMENT TEST- 1/ 1/ MODEL EXAMINATION -2

PECISTER		ROLL NO.	190813
NUMBER	821119104014	YEAR / BRANCH / SECTION	<u></u> 一-CSF

College Code & Name	8211	Kings	college	po	Engèneoring
Degroe/Branch		B.F-C	SF		
Subject Code	898501	Subject Title	theores	04	compatation

Semester	05	All the particulars given are verified					
Date & session	27.12.21/FN	Signature of the Invigilator with date	Been				
No. of pages used	2H	Name of the Invigilator	R. Cigontha LalyPm				
			()				

Instructions to the candidates

1. You are prohibited from writing your NAME in any part of the answer book.

2. You are prohibited from writing or leaving any distinguishing marks so as to identify your answer book.

3. Use both side of the paper for answering questions (Except front page).

4. Check the regulation, Degree, Branch, Semester, Subject code and Subject Title of the Question Paper before answering the questions.

5. Possession of any incriminating material and Malpractice of any nature shall be punishable as rules.

6. No additional sheets will be provided.

Signature of the Student with Date after Evaluation

S. De 530/12/21

Department of Computer Science & Engineering Academic Year 2021-22 / ODD Semester

Class / Sem : III / V Sub Code/Subject : CS8501 / Theory of Computation Subject Incharge : Ms.S.Puvaneswari Date of Exam: 27.12.21

Model Exam - II

R.No	Reg No.	Name of the Student	Model (out of 100)
1	821119104001	Aarthi. R	15
2	821119104002	Aiyappan. S	7
3	821119104003	Ajay Prasanna. G S	8
4	821119104005	Akash .K	6
5	821119104006	Akshayalakshmi. G	13
6	821119104007	Aravind. A	AB
7	821119104008	Avudaiappan .A B	AB
8	821119104009	Bakiya Lakshmi .A	19
9	821119104010	Balakrishnan. M	23
10	821119104011	Bavya. S	17
11	821119104012	Bhavatharani .T	52
12	821119104013	Deepika. P	50
13	821119104014	Devipriya. S	67
14	821119104015	Dharani. G	32
15	821119104016	Divakaran. J	7
16	821119104017	Elayadharshini .T	13
17	821119104018	Fasila Afreen .J	70
18	821119104019	Gokul .M	8
19	821119104020	Gomathi .A	6
20	821119104021	Gopinath. P	3
21	821119104022	Govindharajan. K	9
22	821119104023	Kamali. K	31
23	821119104024	Kanishkar .K	7
24	821119104025	Karkuzhali. N	26
25	821119104026	Karthika. R	3
26	821119104027	Mohamed Yasir. A	15
27	821119104028	Muralidharan. N	20
28	821119104029	Nandhini. J	21
29	821119104031	Pavitha .P	24
30	821119104032	Priyadharshini .E	20
31	821119104033	Ramakrishnan .E	17
32	821119104034	Rethinapriya. T	11
33	821119104035	Sachin .R	1
34	821119104037	Sathish .T	AB
35	821119104038	Selvabharathi. S	8
36	821119104039	Shakthivel .M	24

R.No	Reg No.	Name of the Student	Model (out of 100)
37	821119104040	Siva .G	11
38	821119104041	Sivaranjani . S	25
39	821119104043	Suguna. S	57
40	821119104044	Suresh Karthik .J	3
41	821119104045	Suruthi. S	36
42	821119104046	Surya. A	33
43	821119104047	Swetha. S	50
44	821119104048	Tharanika. K	5
45	821119104049	Varun. K	13
46	821119104050	Vengatramanan. S	8
47	821119104051	Vignesh. K	6
48	821119104052	Vikiramadhithan .M	50
49	821119104053	Viswa .A	2

STAFF INCHARGE

0

S J 30/1-

Course File

Format A

ASSIGNMENT

TITLE

: Problems with Finite Automata and Regular Expression, Ambiguous Grammar

OBJECTIVE

- Understand the concept of Finite Automata
- Know the difference between NFA and DFA
- Convert NFA into DFA

:

- Convert NFA into regular expression and vice versa.
- Determine given grammar is ambiguous or not.

METHODOLOGY

: Descriptive Answers

EVALUATION

: 50 Marks awarded for the conversion process

DATE OF COMPLETION: 25.9.21

St. Pw 19/21 Staff Incharge

HoD/(

NAME : T. BHAVATMABANI ROLLNO: 19CS11 REGNO: 821119104012 SUBCODE : C.58501 SUBJECT : THEORY OF COMPUTATION &SSIGNMENT-I

PART-A

Defene Finite Automaton:

*Ffnite automata is a mathematical models which always accepts regular languages.

* A Finite automata is a collection of 5 tuples $(Q, \Sigma, S, 90, F)$. (Q14).

 $\Rightarrow Q = flnPte set of states which is non empty$ $\Rightarrow \Sigma = Pnput alphabet.$ $\Rightarrow Qo = PnPtPal state Qo = Q$ $\Rightarrow F = set of flnal states$

=> 8 = transpers l'mapping function.

Enumerate the deference between NFA and DFA.

S.NO	DFA	NFA
1.	Every Priput string leads to the unique state of FA.	For the same enput there can be more than one next state.
а.	conversion of regular expression to DFA is complex	Hore Et Es easPert.
3.	DFA requeres more memory for storing state information.	NFA requeres more computations to match r.e. with input.
4.	In DFA there is no E-transitions.	IN NFA E-transitions are possible.

Write down the scules for pumping Lemma for regular Languages.

Rules for pumpling lemma for regular Languages:

cienciating small strings, Z=uvw

* Length of uv, |uv| < n

* length of V, IVI 21

3

* Length of $uv^{i} w \in L$, for all $l = 0, 1, \dots$

where, n = Number of states in regular expression.

Defene ambiguous grammar.

Der Kon Sell

A arammar is said to be ambiguous, if there exists two or more derivation tree for a string so (that means two or more left derivation trees).

Example: $G_1 = \{ \{ \{ \{ \} \}, \{ \{ \{ \{ \} \}, \{ \{ \} \}, \{ \} \}, \{ \} \}, \{ \} \}, \{ \} \}, \{ \} \}$ where p consists of $S \rightarrow S + S | S \# S | a | b$

The string	ataxb can	be generated as	1
S->S+S	A LAND MARKED AND A LAND AND AND A LAND AND AND A LAND AND A LAND AND A LAND AND AND A LAND AND AND AND AND AND AND AND AND AND	a nationation in	
->ats	-> 8+8*5	See Bridge Const	
->a+s*s	$\rightarrow a + s + s$		
->a+a*s	~>ata *s	u Subor Maria	
-> a+a*b	~ ataxb		
		$\frac{n}{(T_{i}) = \frac{n}{2}} \frac{1}{T_{i}} + \frac{1}{T_{i}} \frac{1}{2} + \frac{1}{2} $	
A. C. A. A. A. S. F.A.	19110 21	out Adding 1	

)

What is meant by derivation? Derivation tree or parse tree is a graphical representation for the derivation of the system production rules for a given of 01. Types of derivation: * Left most derivation * Right most derivation.

PART-B

prove the equivalent of NFA and DFA using subset construction.

Equivalent of NFA and DFA using subset construction:

Q={201911923

passeble subset => $2^3 = 8$

Step-2:

D

Transpetern table:

6 a 6 a Ь ø $A = \phi$ Ø A A A \$20,23 20 B-->90 E B -7B C - 91 ø 22 C A D D - 92* Ø Ø D* A A E-{90,913 8901913 8901913 F E E F- 890,923 8901913 20 FX E В 61-29119-23* Ø 92 GTX A D H- EquA 11923 Equipiz E90A23 H* E F

Step-3:

10.11

3

6

TO dets eleminate the unwanted state Triansition table:

Euplain in detail about Finite Automata with & moves with an example.

FPnite Automaton with & moves: peffnition:

The E transitions in NFA are given in order to move from one state the another without having any symbol from input set Σ (a23) Example:

NFA with & can be represented by the same 5 tuple of finite automata

 $M = (Q, \Sigma, S, 90, F)$

where transetton function as Q*(EUEZto2ª

The string w'in L & accepted by NFA can be represented as

LCM) = { WIWE* and S transperson for W from go to F}

problem:

construct NFA with & which accepts a Language consisting the strings of any no. of. a's followed by any no. of. 's followed by no. of. c's

ŝ

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING ACADEMIC YEAR 2021 – 2022 (ODD SEMESTER)

PCE SUMMARY REPORT

YEAR / SEM : III / V Total No of Students: 49 CS8501 / Theory of Computation

S.NO	ACTIVITY	WEIGHTAGE	NO OF STUDENTS PARTICIPATED
1.	GATE Question Paper Solving	10	. 49
	Problem Solving	10	49
3.	Quiz	10	49
4.	NPTEL Swayam Assignment Questions	10	49
E	Mind Map	10	46
5. 6.	Simulation	10	3

Staff Incharge

0

HOD/CSE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ACADEMIC YEAR 2021-2022 / ODD SEMESTER

Year/Sem : III / V CS8501 - Theory of Computation

PCE ACTIVITY REPORT

S.N O	REGISTER NO	NAME	GATE QP	Problem Solving	Quiz	NPTEL SWAYAM Assignment	Mind Map	Simulation	Total
			10	10	10	10	10	10	50
1.	82111910400	Aarthi. R	10	10	10	10	10		50
2.	82111910400	Aiyappan. S	10	10	10	10	10		50
<u>.</u>	82111910400	Ajay Prasanna. G	10	10	10	10	10		50
4.	82111910400	Akash .K	10	10	10	10	10		50
5.	82111910400	Akshayalakshmi	10	10	10	10	10		50
6.	82111910400	Aravind. A	10	10	10	10	10		50
7.	82111910400	Avudaiappan .A	10	10	10	10	10		50
8.	82111910400	Bakiya Lakshmi	10	10	10	10	10		50
9.	82111910401	Balakrishnan. M	10	10	10	10	10		50
10.	82111910401	Bavya. S	10	10	10	10	10		50
11.	82111910401	Bhavatharani.T	10	10	10	10	10		50
12.	82111910401	Deepika. P	10	10	10	10	10		50
13.	82111910401	Devipriya. S	10	10	10	10	10		50
14.	82111910401	Dharani. G	10	10	10	10	10		50
15.		Divakaran. J	10	10	10	10	10		50
16.		Elayadharshini	10	10	10	10	10		50
17.		Fasila Afreen .J	10	10	10	10		10	50
18.		Gokul .M	10	10	10	10	10		50
19.		Gomathi .A	10	10	10	10		10	50
20.	and the second se	Gopinath. P	10	10	10	10	10		50
21			10	10	10	10	10		50
22		Kamali. K	10	10	10	10	10		50
23		Kanishkar .K	10	10	10	10	10		50
24		Karkuzhali. N	10	10	10	10	10		50
25		Karthika. R	10	10	10	10	10	0418 2	50

N	REGISTER NO	NAME	GATE QP	Problem Solving	Quiz	NPTEL SWAYAM Assignment	Mind Map	Simulation	Total
5	REGISTER NO		10	10	10	10	10	10	50
			10				10		50
26.	821119104027	Mohamed Yasir.	10	10	10	10	10		50
27.	821119104028	Muralidharan. N	10	10	10	10	10		50
28.	821119104028 821119104029	Nandhini. J	10	10	10	10	10		50
29.	821119104029	Pavitha .P	10	10	10	10	10		50
30.	821119104031	Priyadharshini	10	10	10	10			50
31.		Ramakrishnan	10	10	10	10	10		50
32.	82111910403	Rethinapriya. T	10	10	10	10	10		50
33.	821119104034	Sachin .R	10	10	10	10	10		50
34.	82111910403	Sathish .T	10	10	10	10	10		50
35.	821119104037	Selvabharathi. S	10	10	10	10	10		50
36	821119104038	Shakthivel .M	10	10	10	10	10		50
37	02111710100	Siva .G	10	10	10	10	10		50
38	02111710101	Sivaranjani . S	10	10	10	10	10		50
39	02111710.011	Suguna. S	10	10	10	10	10		50
40	021117101010	Suresh Karthik	J 10	10	10		10	10	50
41	021117101011	Suruthi. S	10	10	10	10	Spec.	10	50
4	021117101010		10	10	10	10	10	_	50
10	021117101010		10	10	10	10	10		50
4	02111710101		10	10	10) 10	10		50
4	821119104010		10	10	1	0 10	10		50
	5. 821119104049	the second second	n. 10	10	1	0 10	10		50
	6. 821119104050		10	10	1	0 10	10		50
	7. 82111910405	and in a stand hith	10	10	1	0 10	10		50
	48. 82111910405 49. 82111910405		10		1	0 10	1	0	00

Staff Incharge

۰,

A JJIN HOD/CSE

MIND MAPPING

Course File

Format **B**

CONTENT BEYOND THE SYLLABUS

 TITLE
 : Tractable and Intractable Problem

 OBJECTIVE
 : Understand the applications of NP problems

 METHODOLOGY
 : Powerpoint Presentation

 COVERAGE
 :

 • Classification of algorithm based on complexity

 • Example of tractable and intractable problem

OUTCOME

: The students able to,

- Classify the algorithms
- Determine which applications are tractable.

EVALUATION

: Test on the above concept included in model exam

DATE OF COMPLETION: 19.11.21

S. Pin 22/11/21 Staff Incharge

22/4 HoD/CSE

Tractable and Intractable Problem

Introduction

- Let's start by reminding ourselves of some common functions, ordered by how fast they grow.
- constant O(1)
- logarithmic O(log n)
- linear O(n) n-log-n O(n × log n)
- quadratic O(n 2)
- cubic O(n 3)
- exponential O(k n),
- e.g. O(2n) factorial O(n!)
- super-exponential e.g. O(n n)

Types of Function

- **Polynomial functions**: Any function that is O(n k), i.e. bounded from above by n k for some constant k.
- E.g. O(1), O(log n), O(n), O(n $\times \log n$), O(n 2), O(n 3)
- Exponential functions: The remaining functions. E.g. O(2n), O(n!), O(n n)

Types of Algorithm

- Polynomial-Time Algorithm: an algorithm whose order-of-magnitude time performance is bounded from above by a polynomial function of n, where n is the size of its inputs.
- Exponential Algorithm: an algorithm whose order-of-magnitude time performance is not bounded from above by a polynomial function of n.

Tractable & Intractable Problem

- Tractable Problem: a problem that is solvable by a polynomial-time algorithm. The upper bound is polynomial.
- Intractable Problem: a problem that cannot be solved by a polynomial-time algorithm. The lower bound is exponential.

Polynomial Time

- Most of the algorithms we have looked at so far have been
- polynomial-time algorithms
- On inputs of size n, their worst-case running time is O(nk) for some
 constant k
- The question is asked can all problems be solved in polynomial time?
- From what we've covered to date the answer is obviously no. There
- are many examples of problems that cannot be solved by any computer no matter how much time is involved
- There are also problems that can be solved, but not in time O(nk) for
 - any constant k

NP Problems

- Another class of problems are called NP problems
- These are problems that we have yet to find efficient algorithms in
- Polynomial Time for, but given a solution we can verify that solution
 in polynomial time
- Can these problems be solved in polynomial time?
- It has not been proved if these problems can be solved in
- polynomial • time, or if they would require superpolynomial time
- This so-called P != NP question is one which is widely researched
- andhas yet to be settled

Deterministic Vs Non Deterministic

- Let us now define some terms
- P: The set of all problems that can be solved by deterministic
- algorithms in polynomial time
- By deterministic we mean that at any time during the operation of the
- · algorithm, there is only one thing that it can do next
- A nondeterministic algorithm, when faced with a choice of several
- options, has the power to "guess" the right one.
- Using this idea we can define NP problems as,
- NP:The set of all problems that can be solved by nondeterministic
- algorithms in polynomial time.

NP - Complete

- NP-complete problems are set of problems that have been proved to be
- in NP
- That is, a nondeterministic solution is quite trivial, and yet no
- polynomial time algorithm has yet been developed.
- This set of problems has an additional property which does seem to
- indicate that P = NP
- If any of the problems can be solved in polynomial time on a
- deterministic machine, then all the problems can be solved in
- NP(Cook's
- Theorem)
- It turns out that many interesting practical problems have this
- characteristic

examples of tractable problems

- · Searching an unordered list
- · Searching an ordered list
- Sorting a list
- Multiplication of integers (even though there's a gap)
- Finding a minimum spanning tree in a graph (even though there's a gap)

Examples of Intractable problem

- Some of them require a non-polynomial amount of output, so they clearly will take a non-polynomial amount of time,
- e.g.: * Towers of Hanoi: we can prove that any algorithm that solves this problem must have a worst-case running time that is at least 2n - 1.
- * List all permutations (all possible orderings) of n numbers.
 Others have polynomial amounts of output, but still cannot be solved in polynomial time:
- * For an n × n draughts board with an arrangement of pieces, determine whether there is a winning strategy for White (i.e. a sequence of moves so that, no matter what Black does, White is guaranteed to win).

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

ACADEMIC YEAR 2021 - 2022 ODD SEMESTER

SUB CODE/SUBJECT: CS8501 / THEORY OF COMPUTATION BATCH:2019-2023

ADVANCED LEARNER LIST

S.No	Register Number	Student Name		
1.	821119104008	Avudaiappan .A B		
2.	821119104012	Bhavatharani.T		
3.	821119104013	Deepika. P		
4.	821119104014	Devipriya. S		
5.	821119104018	Fasila Afreen .J		
6.	821119104023	Kamali. K		
7.	821119104029	Nandhini. J		
8.	821119104045	Suruthi. S		
9.	821119104047	Swetha. S		
10.	821119104049	Varun. K		
11.	821119104052	Vikiramadhithan .M		

SLOW LEARNERS LIST

S.No	Register Number	Student Name
1.	821119104005	Akash .K
2.	821119104007	Aravind. A
3.	821119104021	Gopinath. P
4.	821119104027	Mohamed Yasir. A
5.	821119104035	Sachin .R
6.	821119104050	Vengatramanan. S
7.	821119104053	Viswa .A

S. Rur **STAFF INCHARGE**

HOD/CSE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING ACADEMIC YEAR 2021 – 2022 (ODD SEMESTER) REVISION CLASS TIME TABLE (With effect from 15.11.21)

ENUE:	Room No: 224	-	FN: 9.30 AM to 12.30 PM AN: 1.15 PM to 4.00 PM				
S.NO	DATE	SUBJECT CODE & NAME (FN)	SUBJECT CODE & NAME (AN)				
1.	15.11.21 (Monday)	¹ CS8592 - Object Oriented Analysis and Design Dr.S.M.Uma	¹ OMF551 - Product Design and Developmen Mr.R.Sriramkumar				
2.	16.11.21 (Tuesday)	¹ CS8591 - Computer Networks Dr.D.Sivakumar	¹ CS8501 - Theory of Computation Ms.S.Puvaneswari				
3.	17.11.21 (Wednesday)	¹ MA8551- Algebra and Number Theory Dr.G.Jeyakrishnan	¹ EC8691 - Microprocessor and Microcontroller Mr.R.Thandayuthapani				
4.	18.11.21 (Thursday)	² CS8592 - Object Oriented Analysis and Design Dr.S.M.Uma	² OMF551 - Product Design and Development Mr.R.Sriramkumar				
5.	19.11.21 (Friday)	² CS8501 - Theory of Computation Ms.S.Puvaneswari	² CS8591 - Computer Networks Dr.D.Sivakumar				
6.	20.11.21 (Saturday)	² EC8691 - Microprocessor and Microcontroller Mr.R.Thandayuthapani	² MA8551- Algebra and Number Theory Dr.G.Jeyakrishnan				
	MOI	DEL EXAMINATION	REVISION				
7.	22.11.21 (Monday)	MA8551- Algebra and Number Theory Dr.G.Jeyakrishnan (MODEL EXAM)	³ CS8591 - Computer Networks Dr.D.Sivakumar				
8.	23.11.21 (Tuesday)	CS8591 - Computer Networks Dr.D.Sivakumar(MODEL EXAM)	³ EC8691 - Microprocessor and Microcontroller Mr.R.Thandayuthapani				
9.	24.11.21 (Wednesday)	EC8691 - Microprocessor and Microcontroller Mr.R.Thandayuthapani(MODEL EXAM)	³ CS8501 - Theory of Computation Ms.S.Puvaneswari				
10.	25.11.21 (Thursday)	CS8501 - Theory of Computation Ms.S.Puvaneswari(MODEL EXAM)	³ CS8592 - Object Oriented Analysis and Design Dr.S.M.Uma				
11.	26.11.21 (Friday)	CS8592 - Object Oriented Analysis and Design Dr.S.M.Uma(MODEL EXAM)	³ OMF551 - Product Design and Development Mr.R.Sriramkumar				
12. 27.11.21 OMF551 - Product Design and Development Mr.R.Sriramkumar		OMF551 - Product Design and	³ MA8551- Algebra and Number Theo: Dr.G.Jeyakrishnan				

FN	9.30 AM to 11.30 AM	STUDY HOURS	AN	1.15 PM to 3.00 PM	STUDY HOURS	r
	11.30 AM to 12.30 PM	TEST HOURS		3.00 PM to 4.00 PM	TEST HOURS	

CLASS COORDINATOR

HOD/CSE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING ACADEMIC YEAR 2021-2022 / ODD SEMESTER

Year/Sem : III / V

Sub Code/ Subject: CS8501 / Theory of Computation Revision Class Mark Statement

S.No	Reg.No	Student Name	16.11.21	19.11.21	24.11.21	25.11.21
1.	821119104001	Aarthi. R	(25)	(2b) 20	(25)	
2.	821119104002	Aiyappan. S	24		_21	20
3,	821119104003	Ajay Prasanna. G	22	_ 20	20	21
4.	821119104005	Akash .K	- 25	19	18	20
5.	821119104006	Akshayalakshmi.	20	18	18	AB
6.	821119104007	Aravind, A	23	21	2.2	21
7.	821119104008	Avudaiappan .A	22	18	19	AB
8.	821119104009	Bakiya Lakshmi	23	25	23	22
9.	821119104010		25	2.6	25	22-
10.		Balakrishnan. M	18	18	AB	23
	821119104011	Bavya. S	19	17	AB	20
11.	821119104012	Bhavatharani .T	25	26	25	24
12.	821119104013	Deepika. P	25	26		
13.	821119104014	Devipriya. S	25	26	25	25
14.	821119104015	Dharani. G	23	23	25	_24
15.	821119104016	Divakaran. J	20		22	2.3
16.	821119104017	Elayadharshini	20	20	2.1	20
17.	821119104018	Fasila Afreen .]	24	21	20	2,1
18.	821119104019	Gokul.M	20	-25_	-24	_24
19.	821119104020	Gomathi .A	20	20	21	20
20.	821119104021	Gopinath. P	20	AB	20	21
21.	821119104022	Govindharajan.		20	21	20
22.	821119104023	Kamali. K	20	22	22	AB
23.	821119104024	Kanishkar .K	23	23	24	20
24.	821119104025	Karkuzhali, N	20	24	23	AB
25.	821119104026	Karthika. R	21	24	24	22

S.No	Reg.No	Student Name	16.11.2)	19.11.21	24112)	25.11.21
26.	821119104027	Mohamed Yasir.	23	AB	18	20
27.	821119104028	Muralidharan. N	24	20	23	
28.	821119104029	Nandhini. J	21	23	24	
29.	821119104031	Pavitha .P	20	20	21	24
30,	821119104032	Priyadharshini	21	21	20	21
31.	821119104033	Ramakrishnan .E	18	20	AB	
32.	821119104034	Rethinapriya. T	20	21		20
33.	821119104035	Sachin .R	20	19	2221	-24
34.	821119104037	Sathish .T	21	19		22
35.	821119104038	Selvabharathi. S	23		21	
36.	821119104039	Shakthivel.M		24	23	_24
37.	821119104040	Siva .G	225	24-	23	_23
38.	821119104041	Sivaranjani . S	24	19	_23	22
39.	821119104043	Suguna, S	21	23	22	24
40.	821119104044	Suresh Karthik .J	25	25	24	-25
41.	821119104045	Suruthi. S	19	18	20	AB
42.	821119104046	Surya. A	20	19	24	_25
43.	821119104047	Swetha. S	21	19	23	_24
44.	821119104048	Tharanika. K	24	23	24	-24
45.	821119104049	Varun. K	23		22	-24
46.	821119104050	Vengatramanan.	23	22	AB	20
47.	821119104051	Vignesh. K	24	25	23	22
48.	821119104052	Vikiramadhithan	24	20	21	21
49.	821119104053	Viswa .A	25	25	24	23
1.25	f Students Present	viswa.A	20	AB	20	20
			49	46	45	44
	f Students Absent		pa-	03	4.	5.
-	Signature	· · ·	S. Ru	1 58. Rw	d. Ru	B. Ru
HOD	Sign		158	SS	58	88

Name: BAKIYALAKSHTOI. A Revisien Test - 2 CLARS : TH CSE 11 W. 65 Subject . Theory of 19.11.2) 76 computation is prove that is a language is orecursive is it & 2. its complemente one both RE and chill brow it main Theosem do - a branning that bage such and and the inter in Is the language is recursive is in complement - 11: + Jone both RE. will strungs. PROON : - Let wood I and I be two recursively entimestable Languages that are accepted by Turining Bachines Nos and nsz. 2. in) it is susceeder then I is clise => 18 wel is accepted by quoining machine ms, and ns. Cur erem . that halls with answer "YES" = IS WEL [WELJ they are accepted by NS2 and MS2 35 that hauts with answer "YES". = NS3 is simulates 13, and 132 and simultaneously Let I be a secure sive familier je libera in mercherne given as. There YESI to reinstance will WEL, m. WEZ* YES NB M2 WEL YES

Name BRAUDERALING

Forom the abov design. I' WEL, If WEL is accepted by w and halls yes: => IS WEL is WEWEN they are accepted by W and haves with yes and discovery and = mi and no are accepted complements to each other. 13 25 Honce uss is a reserving machine that that Just halts dage SI MEL SAUL cell Eleungs. K (1) (1) (2) Thus the larguages and is compaments and decursivel 0-331 mermenable languages, then they are recursive. 2. (ii) 13 2 is sesurgive them I is also greaterine 19 west us accepted by Reserving machine w. and rs. Theosem : It comp 2 is a recusive then the complements are ane auso recursive with the Tow IT mar makes with timened. " YES" PODON :. Let L be a recursive languge Jurning Mochune ro, => lot I be a recursive language Jurning machine 152. The construction of M, and M2 are given as. T YES WEL NO MI 132 YES NO WEI R R 117

IS WEL, then they accepts no, and have with YES " => I's WEE, then they accepts my and haves with "NO " > M2 is addrated once halts No1. => IY MI seturns "YES", then M2 Trates with no". => IT MI setworns " NO", then no hauts with "YES". butputs by and Thus door all W, it wel, we i they are accepts Msz and hatts with either "YES" onor "No". => Thus the L is securisive then its complement is diso recursive. I.i) Theasum :-=> The unon of too recursive encomenable Language is also securisive commercible. physician is and the \mathbf{O} P9000 :-=) let li and Le be a recursive enumerable Languge that with Twoming machine MI and M2. Jelent lin => If we have no outcomes "YES", Else loop during. I' WELL them MS2 subusine #55", Else loop sidewer. => The M3 is performed on to 4 and 12 they are given as, and end on

RE is not not . I'd H YES Mi 11-171 S.120 MB YES WEST Bart mait Jaw El 3.00-471-5 mal Latter ware RE " o'n YES RE => Here the output of Mi and mi ane wathen us the " Or mouto bape, of 188. most "244" amendate 10 KT -=> Juorning roachine nos is scercioms yES" Is atlaast one I'V PUL PULLER ocupues mi and m2 is YES " => The Nos is have with answar by WELL, WELZ accepted have with "VES" 2793321 333 accepted hows with "YES" Else No3 loop yourever that Mi and 182 loop is yoscirer . =1 Thus the remen of two securisive languages are recursive then its comprement also recursive 1.1) Lue is orecursively encimenable :- in the set power - where preserve Prise market and The construction is based on. universal Turning Fearly with Connerge marchaels 13. and Machine. 1 21 - 6 gate - 6 Universal yes is yes W A SUDAN MAR MAR MAR VOST - TAR MAR VI VI and i Mi to the in the particular of the No yon Lne - 80 may 3 119

These theorem proved yours as, > i) a tuoming mechanic code roi is given imput to the Ths. = ii) no guessed in the Wire sught way that mi accepts wr. => iii) no is simulated to the universal machine cocle U. where tests, Mi accepts wi. => B) IS mi accepts we then is accepts w. => Thus noi accepts any strengs wi then is guesseded sught way that to the NB. (=> It L(mi) = \$ then no guessessed made to the) Turning machine . => do ny cloes not accept w. Hence M

Department CSE										Year /Section III					
Name of the subject & Code CS8501 - THEORY DE COMPUTATION								UTATIO	N	Name of the staff S. RUANESWARI					
	Date			No. of students				Deces for a second		rmance	Corrective	action .	Signature		
Test		Total Appea		red Absent	Passed	Pass %	60 - 80	81 -100	Reason for poor perfor	, inalice	Guilten		of staff	of HOD	
Assessment Test - I	2]-9-2)	49	49	-	49	100%	-	-	-		-		58 - Ru 30/91	-88	
Assessment Test - 2	.23.10.21	49	30	19	8	26.6%	ų		Due to rain 19 Stadents unable to allend the exam Stadents didn't attent at Pan-B questions.	n Failed 11 the	for absentoes 2		18. Par 25/10	88	
Model Exam	25-11-21	49	48	I	19	39.5%	n.	4. 1	* Failed Statents didn't all the part-B and Part questions.	A-C	will be cond	LILLA	Q. Ru 2614	15 8 24	
lodel Exam -	27. 12.2)	49	46	3	7	15.2%	_	-	* They did n't write wi model exam. * Little bit confusion i Studying Theorem in	in while	* Advised thur more practice the problems.	A clima	58. Pur 30/12	253	
J Exam	7.2.22	40	49	-	49	100%	-	-			_		58. Ru 814	s &	

Note: - Report should be retained by HOD concerned

Reg. No. :

Question Paper Code : 40395

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2021.

Fifth Semester

Computer Science and Engineering

CS 8501 — THEORY OF COMPUTATION

(Regulations 2017)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Write regular expression to represent exponential constants of 'C' language.
- 2. Define extended transition diagram.
- 3. Write regular expression to recognize the set of strings over {a,b} having odd number of a's and b's and that starts with 'a'.
- 4. When two states are said to be distinguished? Give example.
- 5. Write CFG to accept the language defined by, $L = \{a^i b^j c^k | i, j, k \ge 0 \text{ and } i = j + k\}.$
- 6. List out the steps for performing LL parsing.
- 7. Draw pushdown automata to accept all palindromes of odd length.
- 8. Formally define the pushdown automata based on the types of acceptance.
- 9. Draw Turing machine to compute double the value of an integer.
- 10. State Post's correspondence problem.

PART B — $(5 \times 13 = 65 \text{ marks})$

11. (a) Design an $\mathcal{E} - NFA$ (Nondeterministic finite automaton) to recognize the language L, containing only binary strings of non-zero length whose bits sum to a multiple of 3. Convert $\mathcal{E} - NFA$ into an equivalent minimized deterministic finite automaton. Illustrate the computation of your model on any sample input.

- (b) (i) State and prove the theorem of mathematical induction. (5)
 - (ii) In a programming language, all the following expressions represent Integer and floating point literals. Construct a finite automata that will accept all the different formats and convert the same to deterministic finite automata, if required.
- 12. (a) (i) Prove that regular expressions are closed under union, intersection and Kleene closure. (8)
 - (ii) Identify a language L, such that $L^* = L^+$. (5)

Or

- (b) Find a minimum State Deterministic Finite Automata recognizing the language corresponding to the regular expression (0*10 + 1*0)(01)*.
- 13. (a) What language over $\{0, 1\}$ does the CFG with productions

 $S \rightarrow 00S | 11S | S00 | S11 | 01S01 | 01S10 | 10S10 | 10S01 | C generate?$ Justify your answer.

Or

- (b) Design an pushdown automata to recognize the language, L defined by, L $L = \{wcw^c | w \in \{0,1\}^* \text{ and } w^c \text{ is the one's complement of } w\}.$
- 14. (a) Convert the following grammar to Chomsky Normal form.

 $S \rightarrow A \mid AB0 \mid A1A$ $A \rightarrow A0 \mid C$ $B \rightarrow B1 \mid BC$ $C \rightarrow CB \mid CA \mid 1B.$

Or

- (b) Construct an appropriate model to recognize the language L defined by, $L = \{a^n b^m c^m d^n \mid n, m \ge 0\}.$
- 15. (a) With proper examples, explain P and NP complete problems.

Or

(b) State and prove that "Diagnoalization language is not recursively enumerable".

2

40395

PART C — $(1 \times 15 = 15 \text{ marks})$

16. (a) Design appropriate automation model for the language defined by the grammar given below.

$S \rightarrow aSBC$	$S \rightarrow aBC$
$CB \rightarrow BC$	$aB \rightarrow ab$
$bB \rightarrow bb$	
$cC \rightarrow cc$	$bC \rightarrow bc$

Or

(b) Design appropriate automation model for the language defined by the grammar given below.

 $S \rightarrow abc \mid aAbc$ $Ab \rightarrow bA$ $Ac \rightarrow Bbcc$ $bB \rightarrow Bb$ $aB \rightarrow aa \mid aaA.$

10.1

REVIEW SHEET

After Completion of syllabus Faculty experience in handling / covering syllabus Unit I : * more hours required to describe the design part of NFA - DFA. Unit II : * Allocated bours enough to describe regular expression Unit III : * more pumber of examples required to understand the concept of PDA, and its conversion process. Unit IV : * more humber of Tutoriels required to understand the problems in CFG. Unit V : * Theorems can be explained using PPT sessions. Difficulties (if any) Due to mixed mode (online + offline), students couldn't understand the concepts Completely. Doubt cleaning servicins are very shurt. Feedback on University Question Paper moderate - Question Paper. Sl. Ru 8/2/22 SIGNATURE OF STAFF HOD/CSE