1.1.1 CURRICULUM PLANNING AND IMPLEMENTATION

| S.No | Contents | Page No |
| :---: | :---: | :---: |
| INSTITUTE LEVEL |  |  |
| 1. | Academic Calendar | 1 |
| 2. | Overall Timetable Preparation - Guidelines | 6 |
| DEPARTMENT LEVEL |  |  |
| 3. | Subject Allocation Circular, Staff willingness, Competency Matrix | 7 |
| 4. | Staff Workload | 15 |
| 5. | Subject allocation classwise | 17 |
| COURSE INCHARGE LEVEL |  |  |
| 6. | Syllabus | 18 |
| 7. | Courseplan | 20 |
| 8. | Student Namelist | 27 |
| 9. | Individual Timetable | 29 |
| 10. | Unitwise Notes (Sample PPT) | 30 |
| 11. | Question Bank | 33 |
| 12. | Log Book | 56 |
| 13. | Internal Assessment Question paper, Mark Statement, Sample paper | 74 |
| 14. | Format A - Assignment | 96 |
| 15. | Proofs for teaching Aids / Methodology <br> - Identified PCE Skills and execution proofs | 105 |
| 16. | Format B - Content Beyond Syllabus | 109 |
| 17. | Advanced and Slow Learner List | 112 |
| 18. | Revision Class Schedule, Mark Statement, Sample Paper | 113 |
| 19. | Test Report | 121 |
| 20. | University Question Paper | 122 |
| 21. | Review Sheet | 125 |

## KINGS COLLEGE OF ENGINEERING

Academic Calendar Academic Year 2021-2022 (Odd Semester)
AUGUST 2021

| DATE | DAY |  |
| :---: | :--- | :--- |
| 02.08 .21 | Monday |  |
| 03.08 .21 | Tuesday |  |
| 04.08 .21 | Wednesday | Staff Council Meeting |
| 05.08 .21 | Thursday |  |
| 06.08 .21 | Friday |  |
| 07.08 .21 | Saturday | Holiday |
| 09.08 .21 | Monday |  |
| 10.08 .21 | Tuesday | Submission of DRM Minutes by HODs to IQAC Coordinator |
| 11.08 .21 | Wednesday |  |
| 12.08 .21 | Thursday |  |
| 13.08 .21 | Friday |  |
| 14.08 .21 | Saturday |  |
| 16.08 .21 | Monday | Submission of DRC Meeting Minutes by DRC Convener to Principal |
| 17.08 .21 | Tuesday |  |
| 18.08 .21 | Wednesday | - Commencement of Classes for II, III, IV Year UG |
| - IQAC Meeting |  |  |
| 19.08 .21 | Thursday |  |
| 20.08 .21 | Friday | Muharram - Holiday |
| 21.08 .21 | Saturday | Submission of IQAC Meeting Minutes by IQAC Coordinator to Principal |
| 23.08 .21 | Monday | Submission of Status of Study Material(Soft Copy) to Principal by HODs |
| 24.08 .21 | Tuesday |  |
| 25.08 .21 | Wednesday |  |
| 26.08 .21 | Thursday | Class Committee Meeting I for II, III \& IV Year |
| 27.08 .21 | Friday | Class Committee Meeting I for II, III \& IV Year |
| 28.08 .21 | Saturday | Working day |
| 30.08 .21 | Monday | Krishna Jayanthi - Holiday |
| 31.08 .21 | Tuesday | - Submission of CCM- I Minutes \& Action taken report to Principal by HODs |
| - Submission of stock verification report |  |  |

## KINGS COLLEGE OF ENGINEERING

Academic Calendar Academic Year 2021-2022 (Odd Semester)
SEPTEMBER 2021

| DATE | DAY |  |
| :--- | :--- | :--- |
| 01.09 .21 | Wednesday | Staff Council Meeting |
| 02.09 .21 | Thursday |  |
| 03.09 .21 | Friday |  |
| 04.09 .21 | Saturday | Holiday |
| 06.09 .21 | Monday |  |
| 07.09 .21 | Tuesday |  |
| 08.09 .21 | Wednesday |  |
| 09.09 .21 | Thursday | Submission of DRM Minutes by HODs to IQAC Coordinator |
| 10.09 .21 | Friday | Vinayagar Chaturthi - Holiday |
| 11.09 .21 | Saturday | Working day |
| 13.09 .21 | Monday |  |
| 14.09 .21 | Tuesday |  |
| 15.09 .21 | Wednesday | - Submission of DRC Meeting Minutes by DRC Convener to Principal <br> - IQAC Meeting |
| 16.09 .21 | Thursday | - Submission of Assignment I Status to Principal by HODs <br> - Submission of Continuous Assessment Test I Question Papers to CCE office |
| 17.09 .21 | Friday | Staff Appraisal Feed Back Collection |
| 18.09 .21 | Saturday | - Submission of IQAC Meeting Minutes by IQAC Coordinator to Principal <br> - Submission of Syllabus Completion Report by HODs |
| 20.09 .21 | Monday | Continuous Assessment Test I Commences for UG II, III, IV Year |
| 21.09 .21 | Tuesday |  |
| 22.09 .21 | Wednesday |  |
| 23.09 .21 | Thursday |  |
| 24.09 .21 | Friday |  |
| 25.09 .21 | Saturday | - Working day |
| 27.09 .21 | -Continuous Assessment Test I Ends for UG II, III, IV Year |  |
| 28.09 .21 | Tuesday | Class Committee Meeting II for II, III \& IV Year |
| 29.09 .21 | Wednesday | Submission of Continuous Assessment Test I Result Analysis by HODs |
| 30.09 .21 | Thursday | - Submission of CCM- II Minutes \& Action taken report to Principal by HODs <br> - Counseling I for II, III \& IV Year |

## NO. OF WORKING DAYS : 24

# KINGS COLLEGE OF ENGINEERING <br> Academic Calendar Academic Year 2021-2022 (Odd Semester) 

OCTOBER 2021

| DATE | DAY |  |
| :--- | :--- | :--- |
| 01.10 .21 | Friday | Review Meeting with Principal |
| 02.10 .21 | Saturday | Gandhi Jayanthi - Holiday |
| 04.10 .21 | Monday |  |
| 05.10 .21 | Tuesday | Submission of Counseling I Report by Coordinator to IQAC Coordinator |
| 06.10 .21 | Wednesday | Staff |
| 07.10 .21 | Thursday |  |
| 08.10 .21 | Friday |  |
| 09.10 .21 | Saturday | Working day |
| 11.10 .21 | Monday | Submission of DRM Minutes by HODs to IQAC Coordinator |
| 12.10 .21 | Tuesday |  |
| 13.10 .21 | Wednesday | - Submission of Continuous Assessment Test II Question Papers to CCE office <br>  <br>  <br> - Submission of Assignment II (PCE Activity) Status to Principal by HODs |
| 14.10 .21 | Thursday | Ayudha Pooja - Holiday |
| 15.10 .21 | Friday | Vijaya Dasami - Holiday |
| 16.10 .21 | Saturday |  |
| 18.10 .21 | Monday | - Submission of DRC Meeting Minutes by DRC Convener to Principal |
| -Continuous Assessment Test II Commences for UG II, III, IV Year |  |  |
| 19.10 .21 | Tuesday | Milad-un-Nabi - Holiday |
| 20.10 .21 | Wednesday | IQAC Meeting |
| 21.10 .21 | Thursday |  |
| 22.10 .21 | Friday |  |
| 23.10 .21 | Saturday | - Working day |
| - Submission of IQAC Meeting Minutes by IQAC Coordinator to Principal |  |  |
| 25.10 .21 | Monday | Continuous Assessment Test II Ends for UG II, III, IV Year |
| 26.10 .21 | Tuesday | Class Committee Meeting III for II, III \& IV Year |
| 27.10 .21 | Wednesday | Class Committee Meeting III for II, III \& IV Year |
| 28.10 .21 | Thursday | Submission of Continuous Assessment Test II Result Analysis by HODs |
| 29.10 .21 | Friday | Review Meeting with Principal |
| 30.10 .21 | Saturday | Submission of CCM- III Minutes \& Action taken report to Principal by HODs |

NO. OF WORKING DAYS: 22

KINGS COLLEGE OF ENGINEERING
Academic Calendar Academic Year 2021-2022 (Odd Semester)
NOVEMBER 2021

| DATE | DAY |  |
| :---: | :--- | :--- |
| 01.11 .21 | Monday |  |
| 02.11 .21 | Tuesday |  |
| 03.11 .21 | Wednesday | Staff Council Meeting |
| 04.11 .21 | Thursday | Deepavali - Holiday |
| 05.11 .21 | Friday |  |
| 06.11 .21 | Saturday | - Working day <br> - Counseling II for II, III \& IV Year |
| 08.11 .21 | Monday | Zeroth Project review for Final year UG |
| 09.11 .21 | Tuesday | Submission of Counseling II Report by Coordinator to IQAC Coordinator |
| 10.11 .21 | Wednesday | - Submission of DRM Minutes by HODs to IQAC Coordinator <br> - Submission of Syllabus Completion Report by HODs |
| 11.11 .21 | Thursday | - Revision classes (Phase I) Commences for II, III \& IV Year <br> - Submission of Model Exam Question Papers to CCE office |
| 12.11 .21 | Friday |  |
| 13.11 .21 | Saturday | Revision classes (Phase I) Ends for II, III \& IV Year |
| 15.11 .21 | Monday | - Model Exam: Theory 1 for UG II, III, IV Year <br> - Submission of DRC Meeting Minutes by DRC Convener to Principal |
| 16.11 .21 | Tuesday | Model Exam: Theory 2 for UG II, III, IV Year |
| 17.11 .21 | Wednesday | - Model Exam: Theory 3 for UG II, III, IV Year <br> - IQAC Meeting |
| 18.11 .21 | Thursday | Model Exam: Theory 4 for UG II, III, IV Year |
| 19.11 .21 | Friday | Model Exam: Theory 5 for UG II, III, IV Year |
| 20.11 .21 | Saturday | - Working day <br> - Model Exam: Theory 6 for UG II, III, IV Year <br> -Submission of IQAC Meeting Minutes by IQAC Coordinator to Principal |
| 22.11 .21 | Monday | Model Practical Examinations |
| 23.11 .21 | Tuesday | Model Practical Examinations |
| 24.11 .21 | Wednesday | - Model Practical Examinations <br> - Submission of Model Exam Result Analysis by HODs |
| 25.11 .21 | Thursday | -Review Meeting with Principal <br> -Revision classes (Phase II) Commences for II, III \& IV Year |
| 26.11 .21 | Friday |  |
| 27.11 .21 | Saturday |  |
| 29.11 .21 | Monday | - Last Working day |
| 30.11 .21 | Tuesday |  |
| Revision classes (Phase II) Ends for II, III \& IV Year |  |  |

## KINGS COLLEGE OF ENGINEERING

Academic Calendar Academic Year 2021-2022 (Odd Semester)
DECEMBER 2021

| DATE | DAY |  |
| :---: | :--- | :--- |
| 01.12 .21 | Wednesday | Staff Council Meeting |
| 02.12 .21 | Thursday | Commencement of Practical Examinations |
| 03.12 .21 | Friday |  |
| 04.12 .21 | Saturday | Holiday |
| 06.12 .21 | Monday |  |
| 07.12 .21 | Tuesday |  |
| 08.12 .21 | Wednesday | ISO Internal Audit Commences |
| 09.12 .21 | Thursday |  |
| 10.12 .21 | Friday | Submission of DRM Minutes by HODs to IQAC Coordinator |
| 11.12 .21 | Saturday |  |
| 13.12 .21 | Monday | Commencement of End Semester Examinations |
| 14.12 .21 | Tuesday |  |
| 15.12 .21 | Wednesday | - Submission of DRC Meeting Minutes by DRC Convener to Principal |
| 16.12 .21 | Thursday | ISO Internal Audit Ends |
| 17.12 .21 | Friday | Submission of Subject Allocation Report for next semester |
| 18.12 .21 | Saturday | Submission of IQAC Meeting Minutes by IQAC Coordinator to Principal |
| 20.12 .21 | Monday | Submission of Report on Stock Verification, ISO Internal Audit by coordinators |
| 21.12 .21 | Tuesday |  |
| 22.12 .21 | Wednesday |  |
| 23.12 .21 | Thursday |  |
| 24.12 .21 | Friday |  |
| 25.12 .21 | Saturday | Christmas - Holiday |
| 27.12 .21 | Monday |  |
| 28.12 .21 | Tuesday |  |
| 29.12 .21 | Wednesday |  |
| 30.12 .21 | Thursday |  |
| 31.12 .21 | Friday | Last Date for submission of LM, QB for next semester |

## NO. OF WORKING DAYS : 25



## CC: Secretary/ CEO <br> VP/HODs/ AO <br> DW-Hostels/Transport/Canteen/HS-GH



## ACADEMIC YEAR 2021-22 ODD SEMESTER GUIDELINES FOR TIMETABLE PREPARATION

- Due to Covid'19 classes will be conducted through online mode.
- College Timing is changed to 9.30 AM to 4.00 PM. (5 Periods / Day ) ( $60 \mathrm{Min} /$ Period)
- 15 minutes break will be given in between classes

| 1 | 2 | 3 | 4 - | $01.00$ pm | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 09.30am <br> 10.30am | $\begin{aligned} & 10.45 \mathrm{am} \\ & 10.45 \mathrm{am} \end{aligned}$ |  | 11.55am <br> 12.45pm | $\begin{gathered} 01.45 \\ \mathrm{pm} \\ \text { Lunch } \end{gathered}$ | $\begin{aligned} & 01.45 \mathrm{pm} \\ & 0 . .45 \mathrm{pm} \end{aligned}$ | 03.00pm <br> 04.00pm |

- Lecture Hours
- Maximum 5 to 6 periods allocated for tough Subjects (Credit 4 or Tutorial) and 3 to 4 periods allocated for remaining subjects (Credit 3).
- Toughest subject is selected by concern HOD based on the results obtained in the previous year.
- Tutoria! Subjects / Elective Subjects must be mentioned in timetable itself
- Lab Hours
- Hours will be allocated based on Tamilnadu Govt. \& Anna University Guidelines
- Excess Hours
- Excess Hours will be implemented in Saturdays
- II Year - Mini Project/ Refresher Course - 1 or 2 periods $/$ Week
- III Year - GATE Coaching \& Value Added Course - 1 or 2 periods / Week
- Allocate 1 hr for NPTEL/Swayam for all year
- Training \& Placement Hour
- Allocate 2 Hrs / week to all department students.
- II year \& III year
- Soft Skill - 1 period / Week
- Aptitude - 1 periods / Week


## - IV Year

- Soft skill - 2 periods / Week
- Aptitude - 2 periods / Week
- PCE or Professional Society Activities will be conducted on saturday
- Timetable format is continued.


DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING ACADEMIC YEAR 2020- 2021 (EVEN SEMESTER)

CIRCULAR
DATE: 14.6.2021

Due to Covid 19 (Second wave), Subject allocation will be done in online mode. Staff members are requested to mention their willingness to opt Theory \& Laboratory papers for the forthcoming academic year 2021-2022 Odd semester. Google form shared through our department whatsapp group (CSE STAFF CORNER)

- Senior \& experienced faculties shall prefer to opt Tough / Problematic paper thereby helping in securing good results.
- We will convene department meeting to finalize papers on 19.6.2021 through google meet. Google meet link will be shared in our Whatsapp group

Encl:

1. Link of Google form - https://forms.gle/5msWnLbGqqTBLrmcA

## Subject Allocation 2021-22 Odd Semester

* Required

1. Email *
2. Staff Name:(Ex. Mr.Arun.M) *
$\qquad$
3. Willing subject THEORY. (Kindly select any three THEORY subjects) * Check all that apply.CS8792 Cryptography and Network Security-IV YEARCS8791 Cloud Computing- IV YEAROpen Elective II- IV YEARProfessional Elective II-IV YEARProfessional Elective III-IV YEARCS8591 Computer Networks- III YEARCS8501 Theory of Computation- III YEARCS8592 Object Oriented Analysis and Design- III YEAROpen Elective I- III YEARCS8391 Data Structures- 11 YEAR
$\square$ CS8392 Object Oriented Programming -II YEARGE8151 Problem Solving and Python Programming-I YEARFundamentals of C and Data structures- II ECEOOPS- III EEE
4. Willing subject LAB. (Kindly select any two LAB subjects )*

Check all that apply.CS8381 Data Structures Laboratory -II YEARCS8383 Object Oriented Programming Laboratory -II YEAR
$\square$ CS8382 Digital Systems Laboratory -II YEAR
$\square$ CS8582 Object Oriented Analysis and Design Laboratory- III YEARCS8581 Networks Laboratory - III YEAR
$\square$ CS8711 Cloud Computing Laboratory -IV YEARIT8761 Security Laboratory - IV YEAR
$\square$ GE8161 Problem Solving and Python Programming Laboratory -I YEAR
$\square$ Fundamentals of C and Data structure Lab-II ECEOOPS lab- III EEEIV YEAR Project Work
5. Comment if any.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

This content is neither created nor endorsed by Google.

## Google Forms



## DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING <br> ACADEMIC YEAR 2020-2021 (EVEN SEMESTER)

WILLINGNESS CHART FOR SUBJECT ALLOCATION FOR ACADEMIC YEAR 2021-2022 (ODD SEMESTER)

| STAFF NAME | SUB 1 | SUB 2 | SUB 3 | LAB 1 | LAB 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Dr.S.M.Uma | CS8592 Object <br> Oriented Analysis and Design- III YEAR | $\begin{aligned} & \text { Open Elective II- IV } \\ & \text { YEAR } \end{aligned}$ | CS8591 Computer Networks- III YEAR | IV YEAR Project Work |  |
| K.Abhirami | CS8391 Data <br> Structures- II YEAR | Professional Elective III- IV YEAR | C58791 Cloud Computing- IV YEAR | CS8381 Data <br> Structures Laboratory <br> -II YEAR | IV YEAR Project Work |
| S.Puvaneswari | CS8791 Cloud Computing- IV YEAR | CS8501 Theory of Computation- III YEAR | CS8391 Data <br> Structures- II YEAR | CS8381 Data <br> Structures Laboratory <br> -II YEAR | CS8711 Cloud Computing Laboratory - IV YEAR |
| B.Sangeetha | Professional Elective III- IV YEAR | CS8791 Cloud Computing-IV YEAR | CS8592 Object Oriented Analysis and Design- III YEAR | CS8582 Object <br> Oriented Analysis and Design Laboratory- III YEAR | CS8381 Data <br> Structures Laboratory -II YEAR |
| S.Rajarajan | CS8792 Cryptography and Network SecurityIV YEAR | Open Elective II-IV YEAR | CS8392 Object <br> Oriented <br> Programming -II YEAR | IT8761 Security <br> Laboratory - IV YEAR | CS8381 Data <br> Structures Laboratory - 11 YEAR |
| S.Rajarajan | CS8591 Computer Networks- III YEAR | CS8391 Data <br> Structlres- II YEAR | CS8392 Object <br> Oriented <br> Programming -II YEAR | CS8581 Networks <br> Laboratory - III YEAR | CSS383 Object <br> Oriented <br> Programming <br> Laboratory - II YEAR |


| STAFF NAME | SUB 1 | SUB 2 | SUB 3 | LAB 1 | LAB 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| R.Suganthalakshmi | Open Elective II-IV <br> YEAR | Professional Elective III- IV YEAR | Open Elective 1-III YEAR | CS8581 Networks <br> Laboratory - III YEAR | CS8383 Object <br> Oriented <br> Programming <br> Laboratory - 11 YEAR |
| R.Sriramkumar | CS8791 Cloud Computing-IV YEA | Open Elective 1- III YEAR | CS8592 Object <br> Oriented Analysis and Design- III YEAR | C58582 Object <br> Oriented Analysis and Design Laboratory- III YEAR | C58711 Cloud <br> Computing Laboratory -IV YEAR |
| G.Chandrapraba | CS8392 Object <br> Oriented <br> Programming -II YEAR | Open Elective II-IV YEAR | CS8501 Theory of Computation- III YEAR | CS8383 Object <br> Oriented <br> Programming <br> Laboratory -II YEAR | CS8381 Data <br> Structures Laboratory <br> -II YEAR |
| M.Arun | CS8791 Cloud Computing. IV YEA | CS8392 Object <br> Oriented <br> Programming - II YEAR | OOPS- III EEE | CS8383 Object <br> Oriented <br> Programming <br> Laboratory -II YEAR | OOPS lab- III EEE |





DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING ACADEMIC YEAR 2021－2022（ODD SEMESTER）

| COMPETENCY MATRIX FOR SUBJECT ALLOCATION |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SNO |  | STAFF NAME | $\begin{aligned} & 1 \\ & p \end{aligned}$ |  |  |  |  |  |  |  | $\bar{j}$ <br> z <br> $\stackrel{8}{\Sigma}$ <br> $\underset{\Sigma}{\Sigma}$ |  |
| I YEAR |  |  |  |  |  |  |  |  |  |  |  |  |
| 1. |  | Problem Solving \＆Python Programming |  | ＊＊ | ＊＊ | $\underset{\alpha}{* *}$ | $x^{*} x$ |  | ＊$x^{*} \times$ | ，小k | $\begin{gathered} * \\ x \\ * \end{gathered}$ | ＊＊ |
| 2. |  | Problem Solving \＆Python <br> Programming Lab |  | ＊＊ |  |  |  |  | ＊x $\times$ | 磷 | $\begin{array}{\|l\|} * \\ * \\ * \\ \hline \end{array}$ |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3. | CS3391 | Data Structures | ＊＊ | ＊ 1 ＊ | ＊＊ | ＋${ }^{+}$ | ＊＊ |  |  |  | ＊ | ${ }_{\text {t }}^{*}$ |
| 4. | CS8392 | Object Oriented Programming |  |  |  |  |  | $x+x t$ |  |  | $\stackrel{3}{*}$ | 本林 |
| 5. | CS8381 | Data Structures Lab |  | 䊾 | ＊＊ | ＊＊ | d＊ |  |  |  |  | ＊＊ |
| 6. | CS8383 | OOPs Lab |  |  |  |  |  | ＊dt |  |  | ＊＊ | 秉安＊ |


| SNO |  | STAFF NAME <br> SUBJECT | $\begin{gathered} 1 \\ \sum_{j}^{4} \\ \sum_{i}^{C} \end{gathered}$ |  |  |  |  |  |  |  | $\begin{aligned} & \\ & -1 \\ & 2 \\ & 2 \\ & \frac{x}{x} \\ & \sum \\ & \sum \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| III YEAR |  |  |  |  |  |  |  |  |  |  |  |  |
| 7. | CS8591 | Computer Networks | ＊＊ | kt． | ＊＊ |  | 入＊ | ＊${ }^{\text {a }}$ |  |  |  |  |
| 8. | CS8501 | Theory of Computation |  |  | ＊＊＊ |  |  |  |  |  |  |  |
| 9. | CS8592 | Object Oriented Analysis \＆Design | ＊＊＊ |  |  | 大＊ |  |  |  |  |  |  |
| 10. | OMF551 | Product Design \＆Development |  |  |  |  |  |  | ＊${ }^{4}$ | ホ | $*$ |  |
| 11. | CS8582 | Object Oriented Analysis \＆Design Laboratory |  |  |  |  |  |  |  | $\lambda k$ |  |  |
| 12. | CS8581 | Networks Laboratory |  |  |  | れ＊ |  | 隹禹 | ＊${ }^{\text {为 }}$ |  |  | ＊＊ |
| IV YEAR |  |  |  |  |  |  |  |  |  |  |  |  |
| 13. | CS8792 | Cryptography \＆Network Security |  | KX | 小＊ |  | ${ }_{*}^{*}$ | ＊${ }^{*}$ |  | ＊＊ |  |  |
| 14. | CS8791 | Cloud Computing |  |  | ＊＊ | dx |  |  |  | $\times$ | $x^{\prime} x$ |  |
| 15. | IT8075 | Software Project Management （Prof．Elective－II） | ＊＊ |  | $\underset{x}{x}$ | 4＊ |  |  |  | ＊＊ |  |  |


| SNO |  | STAFF NAME |  |  | 先 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 16. | CS8088 | Wireless Adhoc \＆Sensor Networks （PE－III） | ＊＊ |  | ＊ | 汃 |  | ＊＊ |  |  | ＊ |  |
| 17. | OME752 | Supply Chain Management（Open Elective－II） |  |  |  |  |  |  | ＊＊ |  |  | ＊ 2 |
| 18. | CS8711 | Cloud Computing Laboratory |  |  | ＊＊＊ | ＊＊ |  |  |  | Kス |  |  |
| 19. | IT8761 | Security Laboratory |  |  |  |  | f＊＊ |  |  |  |  |  |
| 20. | EC8393 | Fundamentals of Data structures in C（II ECE） |  | 人＊ | $d *$ |  |  | ＊＊ |  |  | ＊＊ | ＊＊ |
| 21. | EC8381 | Fundamentals of Data structures in C Lab（II ECE） |  |  | ＊${ }^{\text {k }}$ | ＊＊ |  | ＊＊ |  |  |  | ＊＊ |
| 22. | CS8392 | Object Oriented Programming（III EEE） |  |  |  |  |  | $x *$ |  |  |  | 大 4 |
| 23. | CS8383 | OOPs Lab（III EEE） |  |  |  | $4{ }^{*}$ |  | k＊ |  |  | $f_{x}^{*}$ | $k \times$ |
| 24. | OCS752 | Introduction to C Programming（IV EEE） |  |  |  |  | ＊＊ |  | ＊＊ |  | ＊ |  |

＊＊Capable of Handling
＊＊＊Expertise

（Dr．S．M．Uma HOD／CSE）

## DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ACADEMIC YEAR 2021-2022 (ODD SEMESTER)
STAFF WORKLOAD

| SNO | STAFF NAME | THEORY / PRACTICAL WITH SUB.CODE | CLASS / BRANCH WITH CLASS STRENGTH |
| :---: | :---: | :---: | :---: |
| 1. | Dr.S.M.Uma HOD/CSE | T1: CS8592-Object Oriented Analysis \& Design <br> L1: UG Project Phase I | $\begin{aligned} & \text { T1: III CSE (49) } \\ & \text { L1: IV CSE } \end{aligned}$ |
| 2. | Ms.K.Abhirami (HEAD IQAC) | T1: CS8391 - Data Structure <br> L1: CS8381 - Data Structures Lab | $\begin{aligned} & \text { T1: II CSE (63) } \\ & \text { L1: II CSE (63) } \end{aligned}$ |
| 3. | Ms.S.Puvaneswari | T1: CS8503-Theory of Computation <br> T1: IT8075 - Software Project Management <br> L1: CS8711 - Cloud Computing Lab <br> L2: GE8161 - Problem Solving \& Python <br> Programming Lab | $\begin{aligned} & \text { T1: III CSE (45) } \\ & \text { T2: II ECE (47) } \\ & \text { L1: II ECE (47) } \\ & \text { L2: I Year } \end{aligned}$ |
| 4. | Ms.B.Sangeetha | T1: CS8088 - Wireless Adhoc \& Sensor Networks T2: GE8161 - Problem Solving \& Python Programming <br> L1: EC8381- Fundamentals of Data structures in C <br> Lab (M) <br> L2: GE8161 - Problem Solving \& Python Programming Lab | $\begin{aligned} & \text { T1: IV CSE (44) } \\ & \text { T2: I Year } \\ & \text { L1: II ECE (42) } \\ & \text { L2: I Year } \end{aligned}$ |
| 5. | Mr.S.Rajarajan (Class Incharge IV CSE) | T1: CS8792-Cryptography \& Network Security <br> T2: GE8151 - Problem Solving \& Python <br> Programming <br> L1: IT8761 - Security Lab <br> L2: GE8161 - Problem Solving \& Python <br> Programming Lab | $\begin{aligned} & \text { T1: IV CSE (44) } \\ & \text { T2: I Year } \\ & \text { L1: IV CSE(44) } \\ & \text { L2: I Year } \end{aligned}$ |
| 6. | Dr.D.Sivakumar | T1: EC8393 - Fundamentals of Data Structures in C <br> T2: CS8591-Computer Networks <br> L1: CS8581 - Networks Lab <br> L2: GE8161 - Problem Solving \& Python <br> Programming Lab | T1: II ECE(42) <br> T2: III $\operatorname{CSE}(49)$ <br> L1: II CSE (51) <br> L2: I Year |
| 7. | Ms.R.Sugantha Lakshmi | T1: 0ME752 - Supply Chain Management <br> T2: 0CS752 - Introduction to C Programming <br> L1: Communication Networks Lab <br> L2: GE8161 - Problem Solving \& Python <br> Programming Lab | $\begin{aligned} & \text { T1: IV CSE (44) } \\ & \text { T2: IV EEE } \\ & \text { L1: III ECE (45) } \\ & \text { L2: I Year } \end{aligned}$ |
| 8. | Mr.R.Sriramkumar (Class Incharge III CSE) | T1: 0MF551 - Product Design \& Development <br> T2: GE8151 - Problem Solving \& Python <br> Programming <br> L1: CS8582-0bject Oriented Analysis \& Design Laboratory <br> L2: GE8161 - Problem Solving \& Python Programming Lab | T1: III CSE (49) <br> T2: I Year <br> L1: III CSE (99) <br> L2: 1 Year |
| 9. | Mr.M.Arun | T1: CS8791 - Cloud Computing T2: CS8392-00P L1: CS8393-00P Lab L2: GE8161 - Problem Solving \& Python Programming Lab | T1: IV CSE (44) <br> T2: III EEE <br> L1: III EEE <br> L2: I Year |


| SNO | STAFF NAME | THEORY / PRACTICAL WITH SUB.CODE | CLASS / BRANCH WITH CLASS STRENGTH |
| :---: | :---: | :---: | :---: |
| 10. | Ms.G.Chandra <br> Praba <br> (Class Incharge - <br> II CSE) | T1: CS8392 - OOP T2: GE8151 - Problem Solving \& Python Programming L1: CS8393 - OOP Lab L2: GE8161 - Problem Solving \& Python Programming Lab | T1: II CSE (63) <br> T2: I Year <br> L1: II CSE(63) <br> L2: I Year |
| 11. | New staff (R Raintha) | T1: GE8151 - Problem Solving \& Python Programming <br> L1: GE8161 - Problem Solving \& Python Programming Lab | T1: I Year <br> L1: I Year |

J. Mornterini 2q(202). PRINCIPAL

## DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING <br> ACADEMIC YEAR 2021 - 2022 (ODD SEMESTER) <br> CLASSWISE SUBJECT ALLOCATION RECORD

II YEAR

| SUB CODE | SUBJCT NAME | STAFF NAME |
| :--- | :--- | :--- |
| MA8351 | Discrete Mathematics | Dr.R.Suresh |
| CS8351 | Digital Principles and System Design | Mr.W.Newton David Raj |
| CS8391 | Data Structures | Ms.K.Abhirami |
| CS8392 | Object Oriented Programming | Ms.G.Chandraprabha |
| EC8395 | Communication Engineering | Mr.R.Balakrishnan |
| CS8381 | Data Structures Laboratory | Ms.B.Sangeetha |
| CS8382 | Digital Systems Laboratory |  <br> Mr.K.Sudarsan |
| CS8383 | Object Oriented Programming Laboratory | Ms.G.Chandrapraba |
| HS8381 | Interpersonal Skills/ Listening \& Speaking | Mr.J.Radhakrishnan |
| III YEAR |  | STAFF NAME |
| SUB CODE | SUBJCT NAME | Sr.G.Jeyakrishnan |
| MA8551 | Algebra and Number Theory | Dr.D.Sivakumar |
| CS8591 | Computer Networks | Mr.R.Thandayuthapani |
| EC8691 | Microprocessor \& Microcontroller | Ms.S.Puvaneswari |
| CS8501 | Theory of Computation | Dr.S.M.Uma |
| CS8592 | Object Oriented Analysis \& Design | Mr.R.Sriramkumar |
| OMF551 | Product Design and Development | Mr.R.Thandayuthapani |
| EC8681 | Microprocessor \& Microcontroller Lab | Mr.R.Sriramkumar |
| CS8582 | Object Oriented Analysis \& Design Lab | Dr.D.Sivakumar |
| CS8581 | Networks Lab |  |
| IV YEAR |  |  |


| SUB CODE | SUBJCT NAME | STAFF NAME |
| :---: | :--- | :--- |
| MG8591 | Principles of Management | Mr.B.Sureshbabu |
| CS8792 | Cryptography and Network Security | Mr.S.Rajarajan |
| CS8791 | Cloud Computing | Mr.M.Arun |
| OME752 | Supply Chain Management | Ms.R.Suganthalakshmi |
| IT8075 | Software Project Management | Ms.S.Puvaneswari |
| CS8088 | Wireless Adhoc\& Sensor Network | Ms.B.Sangeetha |
| CS8711 | Cloud Computing Laboratory | Ms.S.Puvaneswari |
| IT8761 | Security Laboratory | Mr.S.Rajarajan |

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

## SUBJECT: THEORY OF COMPUTATION

SEMESTER: V

QUESTION BANK (CS8501)
(Version: 3)

## PREPARED BY

Ms.S.PUVANESWARI / CSE

# L T P C 

3003

UNIT I AUTOMATA FUNDAMENTALS

Introduction to formal proof - Additional forms of Proof - Inductive Proofs -Finite Automata - Deterministic Finite Automata - Non-deterministic Finite Automata - Finite Automata with Epsilon Transitions

## UNIT II REGULAR EXPRESSIONS AND LANGUAGES

Regular Expressions - FA and Regular Expressions - Proving Languages not to be regular Closure Properties of Regular Languages - Equivalence and Minimization of Automata.

UNIT III CONTEXT FREE GRAMMAR AND LANGUAGES 9

CFG - Parse Trees - Ambiguity in Grammars and Languages - Definition of the Pushdown Automata - Languages of a Pushdown Automata - Equivalence of Pushdown Automata and CFG, Deterministic Pushdown Automata.

## UNIT IV PROPERTIES OF CONTEXT FREE LANGUAGES

## 9

Normal Forms for CFG - Pumping Lemma for CFL - Closure Properties of CFL - Turing Machines - Programming Techniques for TM.

UNIT V UNDECIDABILITY

Non Recursive Enumerable (RE) Language - Undecidable Problem with RE - Undecidable Problems about TM - Post's Correspondence Problem, The Class P and NP.

TOTAL: 45PERIODS


SIGNATURE OF STAFF INCHARGE
(Ms.S.Puvaneswari AP / CSE)


# DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING COURSE PLAN 

Sub. Code : CS8501
Sub.Name : Theory of Computation
Staff Name : Ms.S.Puvaneswari

Branch / Year / Sem : B.E CSE / III / V
Batch :2019-2023
Academic Year : 2021-22 (ODD)

## COURSE OBJECTIVE

1. To understand the language hierarchy
2. To construct automata for any given pattern and find its equivalent regular expressions
3. To design a context free grammar for any given language
4. To understand Turing machines and their capability
5. To understand undecidable problems and NP class problems

## TEXT BOOK

T1: J.E.Hopcroft, R.Motwani and J.D Ullman, -Introduction to Automata Theory, Languages and Computations, Second Edition, Pearson Education, 2003.

## REFERENCES

R1: H.R.Lewis and C.H.Papadimitriou, -Elements of the theory of Computation, Second Edition, PHI, 2003.

R2: J.Martin, -Introduction to Languages and the Theory of Computation, Third Edition, TMH, 2003.

R3: Micheal Sipser, -Introduction of the Theory and Computation, Thomson Brokecole, 1997.

## WEB RESOURCES

W1. http://math.uaa.alaska.edu/~afkjm/cs351/handouts/finite-auotmata.ppt
(Topic No.4)
W2. www.cs.rpi.edu/~moorthy/Courses/modcomp/slides/Regular_Properties.ppt
(Topic No. 11)
W3. https://nptel.ac.in/courses/106103070/\#
(Topic No.18)
W4. www.cs.rpi.edu/~moorthy/Courses/modcomp/slides/Turing.ppt
(Topic No.23)
W5. web.cs.wpi.edu/~kal/courses/fcs/module9/grahneclass18reandrec.ppt(Topic No.25)

| Topic <br> No | Topic | Books for <br> Reference | Page No. | Teaching <br> Methodology | No. of <br> Hours <br> Required | Cumulative <br> No. of <br> periods |
| ---: | :--- | :---: | :---: | :---: | :---: | :---: |
| AUTOMATA FUNDAMENTALS |  |  |  |  |  |  |
| 1. | Introduction to formal <br> proof | T 1 | $5-13$ | $\mathrm{BB} / \mathrm{PPT}$ | 1 | 1 |
| 2. | Additional forms of Proof | T 1 | $13-17$ | $\mathrm{BB} / \mathrm{PPT}$ | 1 | 2 |
| 3. | Inductive Proofs | T 1 | $19-26$ | $\mathrm{BB} / \mathrm{PPT}$ | 1 | 3 |
| 4. | Finite Automata | T 1 | $37-45$ | PPT | 1 | 4 |
| 5. | DFA | W 1 | 31 | $45-52$ |  |  |
| R 1 | $55-62$ | $\mathrm{BB} / \mathrm{PPT}$ | 1 | 5 |  |  |
| 6. | NFA | T 1 | $55-60$ | VIDEO | 2 | 7 |
| 7. | Finite Automata with <br> Epsilon Transitions | T 1 | $72-77$ | VIDEO | 2 | 9 |

## LEARNING OUTCOME

Upon the completion of this unit, students should be able to

- Understand the various mathematical proving techniques
- Understand the basic concepts of finite automata
- Convert NFA to DFA

UNIT II REGULAR EXPRESSIONS AND LANGUAGES

| 8. | Regular Expressions | T1 <br> R2 | $85-88$ <br> $92-95$ | BB / PPT | 2 | 11 |
| ---: | :--- | :---: | :---: | :---: | :---: | :---: |
| 9. | FA and Regular <br> Expressions | T 1 | $92-107$ | VIDEO | 3 | 14 |
| 10. | Proving Languages not <br> to be regular | T 1 | $128-130$ | $\mathrm{BB} /$ PPT | 1 | 15 |
| 11.Closure Properties of <br> Regular Languages | T 1 | $133-146$ | PPT | 1 | 16 |  |
| 12. | Equivalence and <br> Minimization of <br> Automata. | T 1 | $155-165$ | VIDEO | 2 | 18 |

## LEARNING OUTCOME

Upon the completion of this unit, students should be able to

- Define the regulation expression
- Understand the relationship between FA and Regular expression
- Prove that the given language is regular or not

| UNIT III CONTEXT FREE GRAMMAR AND LANGUAGES | 9 |  |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: |
| 13. | CFG | T 1 | $171-181$ | $\mathrm{BB} /$ PPT | 2 |
| 14. | Parse Trees | T 1 | $183-192$ | SIM | 1 |
| 15. | Ambiguity in Grammars <br> and Languages | T 1 | $207-214$ | VIDEO | 1 |
| 16. | Definition of the <br> Pushdown Automata | T 1 | $225-232$ | $\mathrm{BB} /$ PPT | 1 |
| 17. | Languages of a <br> Pushdown Automata | T 1 | $234-240$ | VIDEO | 22 |
| 18. | Equivalence <br> Pushdown Automata and <br> CFG | T 1 <br> W 3 | $243-250$ | NPTEL | 1 |
| 19. | Deterministic Pushdown <br> Automata. | T 1 | $252-255$ | $\mathrm{BB} /$ PPT | 1 |

\(\left.$$
\begin{array}{|l|l|l|l|l|l|l|}\hline \begin{array}{l}\text { Topic } \\
\text { No }\end{array} & \text { Topic } & \begin{array}{l}\text { Books for } \\
\text { Reference }\end{array} & \text { Page No. } & \begin{array}{l}\text { Teaching } \\
\text { Methodology }\end{array} & \begin{array}{l}\text { No. of } \\
\text { Hours } \\
\text { Required }\end{array} & \begin{array}{l}\text { Cumulative } \\
\text { No. of } \\
\text { periods }\end{array} \\
\hline \begin{array}{l}\text { LEARNING OUTCOME } \\
\text { Upon the completion of this unit, students should be able to } \\
\text { - } \\
\bullet \\
\text { Know about Context Free Grammar (CFG) and Parse Trees } \\
\text { Understand the concepts of Pushdown Automata }\end{array}
$$ <br>

\hline Understand the relationship between PDA, CFG and DPDA\end{array}\right]\)| UNIT IV PROPERTIES OF CONTEXT FREE LANGUAGES |
| :--- |

## LEARNING OUTCOME

Upon the completion of this unit, students should be able to

- Understand the various types of Normal forms
- Know the concepts of Turing Machines
- Solve the problem using Turing Machines
$\left.\begin{array}{|c|c|c|c|c|c|c|}\hline \text { UNIT V UNDECIDABILITY } \\ \hline \text { 25. } & \begin{array}{l}\text { Non } \\ \text { Enumerable } \\ \text { Language }\end{array} & \begin{array}{r}\text { Recursive } \\ \text { (RE) }\end{array} & \begin{array}{c}\text { T1 } \\ \text { W5 }\end{array} & 378-382 & \text { PPT } & 1\end{array}\right] 37$


## LEARNING OUTCOME

Upon the completion of this unit, students should be able to

- Know the various concept of Non Recursive Language
- Determine whether the problem is decidable or not.
- Understand the basic concepts of Class P and NP


## COURSE OUTCOME

At the end of the course, the students will be able to

- Construct automata, regular expression for any pattern.
- Write Context free grammar for any construct.
- Design Turing machines for any language.
- Propose computation solutions using Turing machines.
- Derive whether a problem is decidable or not.

CONTENT BEYOND THE SYLLABUS

1. Tractable and Intractable Problems

## INTERNAL ASSESSMENT DETAILS

| ASST. NO. | I | II | MODEL |
| :--- | :--- | :--- | :--- |
| Topic Nos. | $1-10$ | $11-19$ | $1-29$ |
| Date |  |  |  |

## ASSIGNMENT DETAILS

| ASSIGNMENT | I | II |
| :--- | :--- | :--- |
| Topic Nos. for <br> reference | $1-10$ | PCE |
| Deadline |  |  |


| ASSIGNMENT I (50) <br> (BEFORE CAT - I) | ASSIGNMENT II (50) <br> (BEFORE CAT - II) |
| :---: | :---: |
| Topic No for reference: 1-10 | PCE Activity |
| Part - A <br> 1. Define Finite Automaton <br> 2. Enumerate the difference between NFA and DFA <br> 3. Write down the rules for Pumping Lemma for Regular languages <br> 4. Define ambiguous grammar <br> 5. What is meant by derivation? <br> Part - B <br> 1. Prove the equivalent of NFA and DFA using subset construction. <br> 2. Explain in detail about Finite Automata with $\varepsilon$ moves with an example <br> 3. a.Construct a $\varepsilon-$ NFA for the regular expression $10+(0+11) 0^{*} 1$. <br> b.If G is the grammar S->SbS/a show that G is ambiguous. | Activity - 1: GATE Question Paper Solving <br> $>$ Push down Automata <br> $>$ Turing Machine <br> Activity - 2: Problem Solving <br> > Chomsky Normal Form <br> > Greibach Normal Form <br> Activity - 3:Quiz <br> $>$ Parse trees <br> > Ambiguity in Context Free Grammar <br> Activity - 4:NPTEL Swayam Assignment <br> > Turing Machines <br> Activity - 5:Mindmapping <br> > Closure properties of Context Free language <br> Activity - 6:Simulation <br> $>$ PDA <br> > Turing Machines |

COURSE ASSESSMENT PLAN

| CO | CO Description | Weightage | CAT1 | CAT2 | MODEL | ASSIGN.- <br> $\mathbf{1}$ | PCE | AU |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C01 | Construct <br> automata, regular <br> expression for <br> any pattern. | $30 \%$ | $\sqrt{ }$ |  |  | $\sqrt{ }$ | $\sqrt{ }$ |  |
| CO2 | Write Context <br> free grammar for <br> any construct. | $15 \%$ |  | $\sqrt{ }$ | $\sqrt{ }$ |  |  | $\sqrt{ }$ |
| C03 | Design Turing <br> machines for any <br> language. | $20 \%$ |  | $\sqrt{ }$ | $\sqrt{ }$ |  | $\sqrt{ }$ |  |
| C04 | Propose <br> computation <br> solutions using <br> Turing machines. | $20 \%$ |  | $\sqrt{ }$ | $\sqrt{ }$ |  | $\sqrt{ }$ |  |
| C05 | Derive whether a <br> problem is <br> decidable or not. | $15 \%$ |  |  | $\sqrt{ }$ |  |  |  |

COURSE OUTCOME ALLIGNMENT MATRIX - MODEL EXAM SAMPLE QUESTION SET

| Q.No | Question | Marks | C0 | BTL | PI |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1. | Define Finite Automata. | 2 | C01 | L1 | 1.4.1 |
| 2. | Outline the concepts of principle of mathematical induction | 2 | C01 | L2 | 1.3.1 |
| 3. | What is meant by regular expression? | 2 | C01 | L1 | 1.4.1 |
| 4. | Summarize the definition of pumping lemma for regular set. | 2 | C01 | L2 | 1.4.1 |
| 5. | Build CFG for a signed integer constant in C | 2 | CO2 | L3 | 1.4.1 |
| 6. | Compare PDA acceptance by empty stack method with acceptance by the final state method | 2 | CO2 | L2 | 2.2.4 |
| 7. | Illustrate the configuration of Turing Machine | 2 | CO3 | L2 | 1.4.1 |
| 8. | Define simplification of CFG. | 2 | CO2 | L1 | 1.4.1 |
| 9. | Identify the properties of recursive and recursive enumerable language | 2 | C05 | L3 | 2.1.2 |
| 10. | Apply the concept of decidability, show that halting problem is decidable or not? | 2 | C05 | L3 | 2.4.2 |
| 11. a.i | Prove the following by the principle of induction $\sum_{k=1} k^{2}=\frac{n(n+1)(2 n+1)}{6}$. | 6 | C01 | L5 | 2.4.1 |
| 11.a.ii | P.T A language is accepted by some DFA iff $L$ is accepted by some NFA. | 7 | C01 | L5 | 2.4.1 |
| 11.b.i | Assess a non-deterministic finite automaton accepting the set of strings over $\{\mathrm{a}, \mathrm{b}\}$ ending in aba. Use it to construct a DFA accepting the some set of strings. | 6 | C01 | L5 | 3.2.2 |


| Q.No | Question | Marks | CO | BTL | PI |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 11.b.ii | Deduct into DFA for the following $\varepsilon$ NFA | 7 | C01 | L5 | 3.4.1 |
| 12.a.i | Outline the steps to Convert the following NFA into regular expression. | 6 | C01 | L2 | 3.4.1 |
| 12.a.ii | S.T the set $\mathrm{L}=\left\{0^{\mathrm{i} 2} \mid \mathrm{i} \geq 1\right\}$ is not regular | 7 | C01 | L2 | 2.4.1 |
| 12.b.i | S.T the set $\mathrm{L}=\left\{0^{\mathrm{n}} \mid \mathrm{n}\right.$ is a perfect square $\}$ is not regular | 6 | C01 | L2 | 2.4.1 |
| 12.b.ii | Illustrate the steps to Construct an NFA from the regular expression ((a\|b)*a | 7 | C01 | L2 | 3.2.2 |
| 13.a.i | Construct a parse tree and compute left most derivation, rightmost derivation for a given input, (a+b) and a++ | 7 | CO2 | L3 | 3.2.2 |
| 13.a.ii | Construct a PDA that accept the given CFG: $S \rightarrow$ xaax, $X \rightarrow$ ax $\|\mathrm{bx}\| \varepsilon$ | 6 | CO2 | L3 | 3.2.2 |
| 13.b.i | Solve that if $L$ is $N(M 1)$ (Language accepted by empty stack) for some PDA M1,then L is N(M2)(Language accepted by final state) for some PDA. | 7 | CO2 | L3 | 2.1.3 |
| 13.b.ii | Construct PDA for the language $\mathrm{L}=\left\{\mathrm{ww}^{\mathrm{R}} \mid \mathrm{w}\right.$ in $\left.(\mathrm{a}+\mathrm{b})^{*}\right\}$. | 6 | CO2 | L3 | 3.2.2 |
| 14.a | List the steps to convert the following grammar into an equivalent one with no unit productions and no useless symbols (Simplification of CFG) and convert into CNF form: $S->A B A$, A->aAA\|aBc|bB, B->A | bB | Cb, C->CC |cC | 13 | CO2 | L1 | 3.2.2 |
| 14.b | Show and explain in detail about programming techniques for TM | 13 | C03 | L1 | 2.1.2 |
| 15.a | Examine that $\mathrm{L}_{\mathrm{n}}$ is not recursive and also prove that $\mathrm{Lne}^{2}$ is RE | 13 | C05 | L4 | 1.4.1 |
| 15.b | Analyze the concepts about RICE theorem and Simplify $L_{u}$ is RE but not recursive | 13 | C05 | L4 | 1.4.1 |
| 16.a | Construct PDA from CFG. PDA is given by $\mathrm{P}=(\{\mathrm{p}, \mathrm{q}\},\{0,1\},\{\mathrm{X}, \mathrm{Z}\}, \delta, \mathrm{q}, \mathrm{Z}), \delta$ is defined by $\delta(p, 1, Z)=\{(p, X Z)\}, \delta(p$, $\varepsilon, z)=\{(\mathrm{P}, \varepsilon)\}, \delta(\mathrm{p}, 1, \mathrm{x})=\{(\mathrm{p}, \mathrm{XX})\}$, $\delta(q, 1, X)=\{(q, \varepsilon)\}, \delta(p, 0, X)=\{(q, X)\}$, $\delta(\mathrm{q}, 0, \mathrm{Z})=\{(\mathrm{p}, \mathrm{Z})\}$ | 15 | CO2 | L6 | 2.1.3 |
| 16.b | Write down the steps to provide solution to the PCP problem <br> The TM M=\{\{q1,q2,q3\},\{0,1\},\{0,1,B\}, $\delta$ , $\mathrm{q} 1, \mathrm{~B},\{\mathrm{q} 3\}\}$ where $\delta$ is given by $\delta(q 1,0)=\{(q 2,1, R)\}, \delta(q 1,1)=\{(q 2,0, L)\}$, | 15 | C04 | L6 | 2.2.3 |


|  | $\delta(\mathrm{q} 1, \mathrm{~B})=\{(\mathrm{q} 2,1, \mathrm{~L})\}, \delta(\mathrm{q} 2,0)=\{(\mathrm{q} 3,0, \mathrm{~L})\}$, <br> $\delta(\mathrm{q} 2,1)=\{(\mathrm{q} 1,0, \mathrm{R})\}, \delta(\mathrm{q} 1, \mathrm{~B})=\{(\mathrm{q} 2,0, \mathrm{R})\}$ <br> and input string $\mathrm{w}=01$. Build the <br> solution. |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |

ASSESSMENT PAPER QUALITY MATRIX

| PART | Level 1 | Level 2 | Level 3 | Level 4 | Level 5 | Level 6 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | $1,3,8$ | $2,4,6,7$ | $5,9,10$ |  |  |  |  |
| B | $14 . a$ | 12.a.i. \& ii | 13.a.i \& ii | 15.a.i \& ii | 11.a.i \& ii |  |  |
|  | $14 . b$ | $12 . b . i ~ \& ~ i i ~$ | $13 . b . i ~ \& ~ i i ~$ | $15 . b . i ~ \& i i$ | $11 . b . i \&$ ii |  |  |
| C |  |  |  |  |  | $16 . a$ |  |
|  |  |  |  |  |  | $16 . \mathrm{b}$ |  |
| Total | $\mathbf{1 9}$ | $\mathbf{2 1}$ | $\mathbf{1 9}$ | $\mathbf{1 3}$ | $\mathbf{1 3}$ | $\mathbf{1 5}$ |  |
| Distribution | $\mathbf{4 0 \%}$ |  |  | $\mathbf{3 2 \%}$ |  | $\mathbf{2 8 \%}$ |  |



Approved by
PRINCIPAL


## DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING ACADEMIC YEAR 2021-2022 / ODD SEMESTER

## Year/Sem : III / V <br> III CSE NAMELIST

| S.NO | REGISTER NO | NAME |
| :---: | :---: | :---: |
| 1. | 821119104001 | Aarthi. R |
| 2. | 821119104002 | Aiyappan. S |
| 3. | 821119104003 | Ajay Prasanna. G |
| 4. | 821119104005 | Akash .K |
| 5. | 821119104006 | Akshayalakshmi. |
| 6. | 821119104007 | Aravind. A |
| 7. | 821119104008 | Avudaiappan .A |
| 8. | 821119104009 | Bakiya Lakshmi |
| 9. | 821119104010 | Balakrishnan. M |
| 10. | 821119104011 | Bavya. S |
| 11. | 821119104012 | Bhavatharani.T |
| 12. | 821119104013 | Deepika. P |
| 13. | 821119104014 | Devipriya. S |
| 14. | 821119104015 | Dharani. G |
| 15. | 821119104016 | Divakaran. J |
| 16. | 821119104017 | Elayadharshini |
| 17. | 821119104018 | Fasila Afreen .J |
| 18. | 821119104019 | Gokul.M |
| 19. | 821119104020 | Gomathi .A |
| 20. | 821119104021 | Gopinath. P |
| 21. | 821119104022 | Govindharajan. |
| 22. | 821119104023 | Kamali. K |
| 23. | 821119104024 | Kanishkar.K |
| 24. | 821119104025 | Karkuzhali. N |
| 25. | 821119104026 | Karthika. R |


| S.NO | REGISTER NO | NAME |
| :---: | :---: | :---: |
| 26. | 821119104027 | Mohamed Yasir. |
| 27. | 821119104028 | Muralidharan. N |
| 28. | 821119104029 | Nandhini. J |
| 29. | 821119104031 | Pavitha .P |
| 30. | 821119104032 | Priyadharshini |
| 31. | 821119104033 | Ramakrishnan .E |
| 32. | 821119104034 | Rethinapriya. T |
| 33. | 821119104035 | Sachin .R |
| 34. | 821119104037 | Sathish .T |
| 35. | 821119104038 | Selvabharathi. S |
| 36. | 821119104039 | Shakthivel.M |
| 37. | 821119104040 | Siva .G |
| 38. | 821119104041 | Sivaranjani.S |
| 39. | 821119104043 | Suguna. S |
| 40. | 821119104044 | Suresh Karthik .J |
| 41. | 821119104045 | Suruthi. S |
| 42. | 821119104046 | Surya. A |
| 43. | 821119104047 | Swetha. S |
| 44. | 821119104048 | Tharanika. K |
| 45. | 821119104049 | Varun. K |
| 46. | 821119104050 | Vengatramanan. |
| 47. | 821119104051 | Vignesh. K |
| 48. | 821119104052 | Vikiramadhithan |
| 49. | 821119104053 | Viswa .A |






DEPARTMENT OF COMPUTER SCIENCE \& ENGINEERING
ACADEMIC YEAR 2021-2022 ODD SEMESTER
INDIVIDUAL STAFF TIMETABLE
STAFF NAME: Ms.S.Puvaneswari



## UNIT I AUTOMATA FUNDAMENTALS

Introduction to formal proof - Additional forms of Proof - Inductive Proofs -Finite Automata - Deterministic Finite Automata Nondeterministic Finite Automata - Finite Automata with Epsilon Transitions

## What is TOC?

- In theoretical computer science, the theory of computation is the branch that deals with whether and how efficiently problems can be solved on a model of computation, using an algorithm.
- The field is divided into three major branches:
- automata theory,
- computability theory and
- computational complexity theory.
- In order to perform a rigorous study of computation, computer scientists work with a mathematical abstraction of computers called a model of computation.
- There are several models in use, but the most commonly examined is the Turing machine.
- In theoretical computer science, automata theory is the study of abstract machines and the computational problems that can be solved using these machines.
- These abstract machines are called automata. This automaton consists of
- states (represented in the figure by circles), and
- transitions (represented by arrows).
- Theory of computation is based on mathematical computations. A mathematical computations can be solved by any one of the techniques

1. Proofs about sets.
2. Proofs by contradiction.
3. Proofs by counterexample.
4. Deductive Proofs
5. Inductive Proofs
6. Structural Induction

## Deductive Proofs

- A deductive proofs consists of a sequence of statements whose truth leads from some initial statements called Hypothesis to Conclusion.
- Each step in the proof must follow, by some accepted logical principle from either the given facts or some of the previous statements in the deductive proof or a combination of these on statements.


## Example

- "if H then C "
- The theorem proves by going from hypothesis H to a conclusion C .
- Example: Prove $2^{\wedge} x>x^{\wedge} 2$ if $x>=4$ using deductive proofs
- Solution
- Given $2^{\wedge} x>x^{\wedge} 2$ where $x>=4$
- Consider $x=5$ ( $x>=4$ )
- LHS $=8$ RHS $=25$ (true)
- Hence if $x>=4$ then the given statement is true


## ADDITIONAL FORMS OF PROOF

- Proofs about sets Definition of set:
- Set is a collection of elements or items.
- Proving Equivalence about sets:
- If $A$ and $B$ are 2 expressions, then every elements in the set $A$ is in set $B$ and every elements in set $B$ is in set A .
- Let us prove $P U Q=Q U P$

Theorem 1.10: $R \cup(S \cap T)=(R \cup S) \cap(R \cup T)$.

|  | Statement | Justification |
| :--- | :--- | :--- |
| 1. | $x$ is in $R \cup(S \cap T)$ | Given |
| 2. | $x$ is in $R$ or $x$ is in $S \cap T$ | (1) and definition of union |
| 3. | $x$ is in $R$ or $x$ is in | (2) and definition of intersection |
|  | both $S$ and $T$ |  |
| 4. | $x$ is in $R \cup S$ | (3) and definition of union |
| 5. | $x$ is in $R \cup T$ | (3) and definition of union |
| 6. | $x$ is in $(R \cup S) \cap(R \cup T)$ | (4), (5), and definition |
|  |  | of intersection |

## $P U Q=Q U P$

- LHS

- RHS

|  | Statement | Justification |
| :--- | :--- | :--- |
| 1 | X is in QUP | Given |
| 2 | X is in Q or X is in P | By Definition of Union |
| 3 | X is in P or X is in Q | By Definition of Union |
| 4 | X is in PUQ | By Definition of Union from <br> $3^{\text {rd }}$ rule |



## Proof by contradiction (contrapositive)

- The contrapositive of the statements "if H then C " is "if not C then not H ".
- A statement and its contrapositive are either both true or false.


## Proofs by Counterexample

- Prove the statements with an example for all possible conditions.
- Example
- Prove All primes are odd.

Solution
Take counter example as 2 which is a prime number. But it is not an odd number.
Hence this proves the given statement is false
Henctis

- Example: Prove PUQ=QUP using contradiction. Solution:

1. By contradiction assume PUQ != QUP
2. Now consider $x$ is in $Q$ or $x$ is in $P$
3. Then it also implies $x$ is in $P$ or $x$ is in $Q$
4. So the assumption is false
5. Hence $P U Q=Q U P$ is proved

## SUMMARY

- Automata Theory
- Formal Proof Techniques
- Proof about sets
- Proof by contradiction
- Proof by counter example


## Assignment

- Solve by Deductive proof method,
- $R \cap(S \cup T)=(R \cap S) \cup(R \cap T)$



## UNIT I <br> AUTOMATA FUNDAMENTALS <br> PART - A


4.

Define Finite Automata.

Finite Automata is a mathematical model of a system with discrete inputs and outputs. The system can be in any one of finite number of states and the state summarizes the history of past inputs and determines the behavior of the system for subsequent input.
5. Define deductive proof.
REMEMBER $\quad$ C01 $\quad$ PI

BT - L1
A deductive proof consists of a sequence of statements whose truth leads from some initial statements called "Hypothesis" to "conclusion" statements. Each step in the proof must follow, by some accepted logical principal from either the given facts or some of the previous statements in the deductive proof or a combination of these.
Ex: "if H then C". The theorem proves by going from hypothesis H to a conclusion C.


In theoretical computer science, automata theory is the study of abstract machines (or more appropriately, abstract 'mathematical' machines or systems) and the computational problems that can be solved using these machines. These abstract machines are called
automata. This automaton consists of

- states (represented in the figure by circles),
- Transitions (represented by arrows).

10. What are the applications of automata theory?

| REMEMBER | CO1 | PI |
| :---: | :---: | :---: |
| BT - L1 |  | 1.4 .1 |

The automata theory can be applied,

- In compiler construction.
- In switching theory and design of digital circuits.
- To verify the correctness of a program.
- Design and analysis of complex software and hardware systems.
- To design finite state machines such as Moore and Mealy machines.

11. | What are the components of Finite automaton <br> model? | REMEMBER <br> BT - L1 | CO1 | PI |
| :--- | :--- | :---: | :---: |

The components of FA model are Input tape, Read control and finite control.

- The input tape is divided into number of cells. Each cell can hold one i/p symbol
- The read head reads one symbol at a time and moves ahead.
- Finite control acts like a CPU. Depending on the current state and input symbol read from the input tape it changes state.
$\left.\begin{array}{|l|l|c|c|c|}\text { 12. } & \text { Define finite state systems. } & \text { REMEMBER } & \text { CO1 } & \text { PI } \\ \text { BT - L1 }\end{array}\right]$

A finite state system or finite state machine is a "Mathematical model" of a system with certain input, and finally given an output. The input is processed by going through various states, and these states are called as intermediate state.
13. Prove $1+2+3+\ldots+n=n(n+1) / 2$ using

## UNDERSTAND

 C01 induction method.BT - L2
2.1.3

Consider the two step approach for a proof by method of induction
i. Basis: Let $\mathrm{n}=1$ then

LHS = 1 and RHS = $1+1 / 2=1$
Hence, LHS = RHS.
ii. Induction hypothesis:

To prove $1+\beta+\gamma+\ldots+n=n(n+1) / \beta+(n+1)$
Consider $\mathrm{n}=\mathrm{n}+1$ then,
$1+\beta+\gamma+\ldots+n+(n+1)=n(n+1) / \beta+(n+1) 2$

$$
=n+3 n+2 / 2
$$

$$
=(n+1)(n+2) / 2
$$

Thus it is proved that $1+2+\gamma+\ldots+n=n(n+1) / \beta$.
14. Define the term Epsilon transition.

| REMEMBER | CO1 | PI |
| :---: | :---: | :---: |
| BT - L1 |  | 1.4 .1 |

The $\varepsilon$-transition means a move from one state to another state, without reading any symbol. NFA provides $\varepsilon$-transitions.

| 15. | Define Transition diagram. | REM |
| :--- | :--- | :---: | :---: | :---: |

Transition diagram is a directed graph where vertices correspond to the states of the
finite automata and arcs represent the transition from state p to q on input a .


The finite automata is called Non Deterministic Finite Automaton(usually denoted as NFA) if there exists more transitions for a specific input from current state to next state.NFA additionally have an epsilon( $\varepsilon$ ) transition.(i.e)transition from one state to another without reading input symbol.
Ex:

a,b

| 16. | What is Non Deterministic Finite Automaton? | REMEMBE BT - L1 | C01 | $\begin{gathered} \text { PI } \\ \text { 1.4.1 } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| The finite automata is called Non Deterministic Finite Automaton(usually denoted as NFA) if there exists more transitions for a specific input from current state to next state.NFA additionally have an epsilon( $\varepsilon$ ) transition.(i.e)transition from one state to another without reading input symbol. <br> Ex: |  |  |  |  |
|  |  |  |  |  |
| 17. | What is the principle of mathematical induction? | $\begin{gathered} \text { REMEMBER } \\ \text { BT - L1 } \end{gathered}$ | C01 | $\begin{gathered} \text { PI } \\ 1.4 .1 \end{gathered}$ |

Let $\mathrm{P}(\mathrm{n})$ be a statement about a non negative integer n . Then the principle of mathematical induction is that $P(n)$ follows from

- $P(1)$ and
- $\mathrm{P}(\mathrm{n}-1)$ implies $\mathrm{P}(\mathrm{n})$ for all $\mathrm{n}>1$.

Condition(i) is called the basis step and condition (ii) is called the inductive step. $\mathrm{P}(\mathrm{n}-1)$ is called the induction hypothesis.
18. What are the properties of transition function?
REMEMBER
BT - L1
C01 $\quad$ PI

BT - L1
1.4.1

The properties of transition function are as follows:

- $\delta(q, \varepsilon)=q$
- For all strings w and input symbol a $\Delta(q, a w)=i(i(q . a), w) \Delta(q, w a)=i(i(q, w) . a)$
- The transition function $\delta$ can be extended that operates on states and strings.
$\left.\begin{array}{|l|l|c|c|c|}\text { 19. } & \text { What is meant by inductive proof? } & \text { REMEMBER } & \text { C01 } & \text { PI } \\ \text { BT - L1 }\end{array}\right]$

The inductive proof is used to define the objects recursively. This follows 3 steps :

- Basis step-prove the statement for lowest value.
- Induction Hypothesis-assume the statement is true for value K.
- Inductive step-prove the statement is true for the value $\mathrm{k}+1$.

20. What is meant by proof by contrapositive?

| REMEMBER | C01 | PI |
| :---: | :---: | :---: |
| BT - L1 |  | 1.4 .1 |

The contrapositive of the statement " if H then C " is If not C then not H ". A statement and its contrapositive are either both true or both false, so it can prove either to prove the other. A statement and its contrapositive are logically equivalent: if the statement is true, then its contrapositive is true, and vice versa.
21. What are the laws used to prove a statement?


C01
PI BT - L1 1.4.1

- Additive inverse: $a+(-a)=0$
- Multiplicative inverse: $a^{*} 1 / a=1$

\begin{tabular}{|c|c|c|c|c|c|}

\hline \multicolumn{6}{|c|}{| - Absorption Law: $\mathrm{AU}(\mathrm{A} \cap \mathrm{B})=\mathrm{A}, \mathrm{A} \cap(\mathrm{AUB})=\mathrm{A}$ |
| :--- |
| - Demorgan's Law: $(A U B)^{{f77a6301e-3f30-41d0-8c6b-3c075e097568}} \cap B^{\prime},(A \cap B)^{{f50404910-3dd5-4edc-83b7-16e2378d4e38}} U B^{`}$ |} <br>

\hline 22. \& What are the basic symbols used in the proof? \& \& $$
\begin{gathered}
\text { REMEMBER } \\
\text { BT - L1 }
\end{gathered}
$$ \& C01 \& \[

$$
\begin{gathered}
\text { PI } \\
\text { 1.4.1 }
\end{gathered}
$$
\] <br>

\hline \multicolumn{6}{|c|}{| - U-Union |
| :--- |
| - $\varepsilon$ - Empty String |
| - $\Phi$ - NULL set |
| - 7-negation |
| - '- compliment |
| - = > implies |} <br>

\hline 23. \& What is meant by proof by contradiction? \& \& $$
\begin{gathered}
\text { REMEMBER } \\
\text { BT - L1 }
\end{gathered}
$$ \& C01 \& \[

$$
\begin{gathered}
\text { PI } \\
1.4 .1
\end{gathered}
$$
\] <br>

\hline \multicolumn{6}{|r|}{In logic, proof by contradiction is a form of proof that establishes the truth or validity of a proposition by first assuming that the opposite proposition is true, and then shows that such an assumption leads to a contradiction.} <br>

\hline 24. \& Justify " All primes are odd" \& \& $$
\begin{aligned}
& \text { NDERSTAND } \\
& \text { BT - L2 }
\end{aligned}
$$ \& C01 \& \[

$$
\begin{gathered}
\text { PI } \\
2.4 .4
\end{gathered}
$$
\] <br>

\hline \multicolumn{6}{|r|}{| The problem can be solved by Proof by Contradiction. Assume the integer 2 is a prime but 2 is even. For any sets $\mathrm{a}, \mathrm{b}, \mathrm{c}$ if $\mathrm{a} \Lambda \mathrm{b}=\Phi$ and c is a subset of b then prove that $\mathrm{a} \Lambda \mathrm{c}=\Phi$. |
| :--- |
| Given: $\mathrm{a} \Lambda \mathrm{b}=\Phi$ and c subset of b |
| Assume: $\mathrm{a} \Lambda \mathrm{c} \neq \Phi$ |
| Then there exists $\mathrm{x}, \mathrm{x} \in \mathrm{a}$ and $\mathrm{x} \in \mathrm{c}=>\mathrm{x} \in \mathrm{b}$ |
| $=>\mathrm{a} \Lambda \mathrm{b} \neq \Phi=>\mathrm{a} \Lambda \mathrm{c}=\Phi$ (i.e., the assumption is wrong) |} <br>

\hline 25. \& Why switching circuits are called as finite state systems? \& \& $$
\begin{aligned}
& \text { NDERSTAND } \\
& \text { BT - L2 }
\end{aligned}
$$ \& C01 \& \[

$$
\begin{gathered}
\text { PI } \\
\text { 1.4.1 }
\end{gathered}
$$
\] <br>

\hline \multicolumn{6}{|r|}{A switching circuit consists of a finite number of gates, each of which can be in any one of the two conditions 0 or 1 . Although the voltages assume infinite set of values, the electronic circuitry is designed so that the voltages corresponding to 0 or 1 are stable and all others adjust to these values. Thus control unit of a computer is a finite state system.} <br>

\hline 26. \& \multicolumn{2}{|l|}{Construct DFA over $\Sigma=(a, b)$ which produces not more than 3a's.} \& \[
$$
\begin{aligned}
& \hline \text { APPLY } \\
& \text { BT - L3 }
\end{aligned}
$$

\] \& C01 \& \[

$$
\begin{gathered}
\text { PI } \\
3.2 .1
\end{gathered}
$$
\] <br>

\hline \multicolumn{6}{|r|}{} <br>
\hline
\end{tabular}

PART - B

| 1. | Prove that for every L recognized by an NFA, there exists an equivalent DFA accepting the same language L <br> (13) | $\begin{gathered} \hline \text { (AU ND- } \\ 2020) \end{gathered}$ | $\begin{gathered} \text { UNDERSTAND } \\ \text { BT - L2 } \end{gathered}$ | C01 | $\begin{gathered} \mathrm{PI} \\ 2.4 .4 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2. | Prove that for every L recognized by an $\in-N F A$, there exists an equivalent DFA accepting the same language L <br> (13) | $\begin{gathered} \hline \text { (AU ND- } \\ 2020) \end{gathered}$ | $\begin{gathered} \hline \text { UNDERSTAND } \\ \text { BT - L2 } \end{gathered}$ | C01 | $\begin{gathered} \mathrm{PI} \\ 2.4 .4 \end{gathered}$ |


| 3. | Construct a Determin equivalent to the NFA $\mathrm{p},\{\mathrm{s}\}$ ) where $\delta$ is give $\begin{array}{\|c\|} \hline \delta \\ \hline \mathrm{p} \\ \hline \mathrm{q} \\ \hline \mathrm{r} \\ \hline \mathrm{~s} \\ \hline \end{array}$ | Finite <br> $\{p, q, r, s$ <br> 0 <br> $\{p, q\}$ <br> $\{r\}$ <br> $\{s\}$ <br> $\{s\}$ | utomata ,\{0,1\}, $\delta$ <br> (13) | $\begin{aligned} & \text { (AU ND- } \\ & \text { 2019) } \end{aligned}$ | $\begin{aligned} & \hline \text { APPLY } \\ & \text { BT - L3 } \end{aligned}$ | C01 | $\begin{gathered} \text { PI } \\ \text { 3.2.1 } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4. | Give NFA accepting th such that two 0's are whose length is 4 i , for | of st rated ne i>= | gs in $(0+1)^{*}$ a string <br> (13) | $\begin{aligned} & \text { (AU ND - } \\ & \text { 2019) } \end{aligned}$ | $\begin{aligned} & \text { APPLY } \\ & \text { BT - L3 } \end{aligned}$ | C01 | $\begin{gathered} \text { PI } \\ 3.2 .1 \end{gathered}$ |
| 5. | Convert the $\varepsilon$-NFA to DFA and list the difference between NFA and DFA |  |  |  | $\begin{aligned} & \hline \text { APPLY } \\ & \text { BT - L3 } \end{aligned}$ | C01 | $\begin{gathered} \hline \text { PI } \\ 3.2 .1 \end{gathered}$ |
| 6. | Prove that for every $\mathrm{n}>=1$ by mathematical induction $\sum^{\mathrm{n}} \mathrm{i}^{3}$$\begin{equation*} =\{n(n+1) / 2\}^{2} \tag{7} \end{equation*}$ |  |  |  | $\begin{gathered} \text { UNDERSTAND } \\ \text { BT - L2 } \end{gathered}$ | C01 | $\begin{gathered} \hline \text { PI } \\ 2.1 .3 \end{gathered}$ |
| 7. | (i) Given $\sum=\{\mathrm{a}, \mathrm{b}\}$, construct a DFA which recognize the language $=\left\{b^{m} \mathrm{a} b^{n}: \mathrm{m}, \mathrm{n}>0\right\}$ <br> (ii)Determine the DFA from a given NFA $\mathrm{M}=\left(\left\{q_{0}, q_{1}\right\},\{\mathrm{a}, \mathrm{b}\}, \delta, q_{0},\left\{q_{1}\right\}\right)$ with the state table diagram for $\delta$ given below. $\begin{array}{ccc} \delta & a & b \\ q_{0} & \left\{q_{0}, q_{1}\right\} & \left\{q_{1}\right\} \\ q_{1} & \emptyset & \left\{q_{0}, q_{1}\right\} \\ \hline \end{array}$ |  |  |  | $\begin{align*} & \hline \text { APPLY } \\ & \text { BT - L3 } \tag{6} \end{align*}$ | C01 | $\begin{gathered} \hline \text { PI } \\ 3.2 .1 \end{gathered}$ |
| 8. | Discuss the basic approach to convert from NFA to Regular expression. Illustrate with an example. |  |  |  | $\begin{gathered} \hline \text { UNDERSTAND } \\ \text { BT - L2 } \end{gathered}$ | C01 | $\begin{gathered} \text { PI } \\ 3.2 .1 \end{gathered}$ |
| 9. | Prove that if $\mathrm{x}>=4$ then $2^{\mathrm{x}}>=\mathrm{x}^{2}$ |  |  |  | $\begin{gathered} \hline \text { UNDERSTAND } \\ \text { BT - L2 } \end{gathered}$ | C01 | $\begin{gathered} \hline \text { PI } \\ 2.1 .3 \end{gathered}$ |
| 10. | Prove that every tree has 'e' edges and ' $\mathrm{e}+1$ ' nodes. |  |  |  | $\begin{aligned} & \hline \text { UNDERSTAND } \\ & \text { BT - L2 } \end{aligned}$ | C01 | $\begin{gathered} \text { PI } \\ 2.1 .3 \end{gathered}$ |
| 11. | Prove the equivalence of NFA and DFA using subset construction. |  |  |  | $\begin{gathered} \text { UNDERSTAND } \\ \text { BT - L2 } \end{gathered}$ | C01 | $\begin{gathered} \text { PI } \\ 3.2 .1 \end{gathered}$ |
| 12. | Convert the following NFA to a DFA. |  |  |  | $\begin{aligned} & \text { APPLY } \\ & \text { BT - L3 } \end{aligned}$ | C01 | $\begin{gathered} \text { PI } \\ 3.2 .1 \end{gathered}$ |
| 13. | Prove the equivalence of NFA with $\varepsilon$ and NFA without $\varepsilon$ transition. |  |  |  | $\begin{gathered} \text { UNDERSTAND } \\ \text { BT - L2 } \end{gathered}$ | C01 | $\begin{gathered} \text { PI } \\ 3.2 .1 \end{gathered}$ |


| 14. | Prove that for every integer $n>=0$ the number $4^{2 n+1}+3^{n+2}$ is a multiple of 3 . | UNDERSTAND BT - L2 | C01 | $\begin{gathered} \hline \text { PI } \\ 2.1 .3 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 15. | (i) Prove the following by the principle of induction $\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}^{2}=\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6} .$ <br> (ii) Construct a DFA that accepts all strings on $\{0,1\}$ containing the substring 101. | UNDERSTAND BT - L2 | C01 | $\begin{gathered} \hline \text { PI } \\ 2.1 .3 \end{gathered}$ |
| 16. | (i) Construct a non-deterministic finite automaton accepting the set of strings over $\{a, b\}$ ending in aba. Use it to construct a DFA accepting the some set of strings. (7) <br> (ii) Construct NFA with $\varepsilon$-moves which accepts a language consisting the strings of any number of a's, followed by any number c's. | $\begin{aligned} & \hline \text { APPLY } \\ & \text { BT - L3 } \end{aligned}$ | C01 | $\begin{gathered} \text { PI } \\ 3.2 .1 \end{gathered}$ |
| 17. | Consider the following $\varepsilon$-NFA for an identifier. Consider the letter $\varepsilon$-closure of each state and find it's equivalent Deterministic Finite Automata. | $\begin{aligned} & \text { APPLY } \\ & \text { BT - L3 } \end{aligned}$ | C01 | $\begin{gather*} \text { PI }  \tag{6}\\ 3.2 .1 \end{gather*}$ |

## UNIT II <br> REGULAR EXPRESSIONS \& LANGUAGES <br> PART - A

| 1. | Write the regular expression for all strings that contain no more than one occurrence of aa. | $\begin{gathered} \hline \text { (AU - ND } \\ 2020) \end{gathered}$ | APPLY BT - L3 | C01 | $\begin{gathered} \text { PI } \\ 3.2 .1 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Regular expression: <br> When aa in first position : aa (ba\|bb|b)* <br> When aa in middle position: (ab\|bb|b)*aa(ba|bb|b)* <br> When aa in last position:(ab\|bb|b)*aa <br> The final output is: $\mathrm{aa}(\mathrm{ba\|bb\|b})^{*}+(\mathrm{ab}\|\mathrm{bb}\| \mathrm{b})^{*} \mathrm{aa}(\mathrm{ba\mid}\|\mathrm{bb}\| \mathrm{b})^{*}+(\mathrm{ab}\|\mathrm{bb}\| \mathrm{b})^{*} \mathrm{aa}$ |  |  |  |  |  |
| 2. | Write a regular expression for even number of a's and even number of b's of a string $w=\{a, b\}^{*}$ | $\begin{gathered} \hline \text { (AU - ND } \\ 2020) \end{gathered}$ | APPLY <br> BT-L3 | C01 | $\begin{gathered} \hline \text { PI } \\ 3.2 .1 \end{gathered}$ |
| Regular Expression: <br> Even Number of a's: (aa)* <br> Even Number of b's: (bb)* <br> The final output is: (aa)*(bb)* |  |  |  |  |  |

- Union is commutative
- Union is idempotent

26. What is a bad pair?
REMEMBER
C01
BT - L1
1.4.1
A pair ( $p, q$ ) is called as a bad pair if

- States p and q are distinguishable such that there is some string w where one of $\delta(\mathrm{p}, \mathrm{w})$ and $\delta(\mathrm{q}, \mathrm{w})$ is accepting.The table filling algorithm does not find p and q to be distinguished.


## PART - B

1. Prove that the following languages are not regular using pumping lemma.
i) All unary strings of length prime.
ii) $L=\left\{u u \mid u \in\{0,1\}^{*}\right\}$.
2. State and Prove any two closure properties of Regular Languages
3. (i).Prove that any language accepted by a Deterministic Finite Automata can be represented by a regular expression
(ii). Construct a FA for the regular expression $10+$ $(0+11) 0^{*} 1$.
(6)
4. Prove that the following languages are not regular:
(i). $\left\{w \in\{a, b\}^{*} \mid w=w^{R}\right\}$
(7)
(ii). Set of strings of 0 's and 1 's beginning with a 1 whose value treated as a binary number is a prime.
(6)
5. Show that the regular language are closed under:
a. Union
b. Intersection
c. Kleene Closure
d. Difference
6. Design a finite automaton for the regular expression $(0+1)^{*}(00+11)\left(0+1^{*}\right)$
7. Prove that the class of regular sets is closed under complementation.
8. Convert the following NFA into regular expression.
(7)
(13)

9. State the pumping lemma for Regular languages. S.T the set
$\mathrm{L}=\left\{0^{\mathrm{i} 2} \mid \mathrm{i} \geq 1\right\}$ is not regular
10. Prove that $\left.\mathrm{L}=\left\{0^{2 \mathrm{n}}\right\} \mathrm{n}>=1\right\}$ is not regular
(6)

| REMEMBER | CO1 | PI |
| :---: | :---: | :---: |
| BT - L1 |  | 2.4 .4 |
| UNDERSTAND | CO1 | PI |
| BT - L2 |  | 2.4 .4 |

Subject Code / Name: CS8501 / Theory of Computation

| 11. | Give DFA accepting the following languages over the alphabet $\{0,1\}$, the set of all strings ending in 00 and minimize the Deterministic Finite Automata. <br> (13) | UNDERSTAND BT - L2 | C01 | $\begin{gathered} \text { PI } \\ 3.2 .1 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 12. | Let $r$ be a regular expression. Then prove that there exists an NFA with $\varepsilon$-transitions that accepts L(r). | UNDERSTAND BT - L2 | C01 | $\begin{gathered} \text { PI } \\ 2.4 .4 \end{gathered}$ |
| 13. | Construct an NFA equivalent to the regular expression $\begin{equation*} ((0+1)(0+1)(0+1))^{*} \tag{13} \end{equation*}$ | $\begin{aligned} & \text { APPLY } \\ & \text { BT - L3 } \end{aligned}$ | C01 | $\begin{gathered} \text { PI } \\ 3.2 .1 \end{gathered}$ |
| 14. | Show that $\left(\mathrm{r}^{*}\right)^{*}=\mathrm{r}^{*}$ for a regular expression (6) | UNDERSTAND BT - L2 | C01 | $\begin{gathered} \mathrm{PI} \\ 2.4 .4 \end{gathered}$ |
| 15. | S.T the set $\mathrm{L}=0^{\mathrm{n} 2} \mid \mathrm{n}$ is an integer and $\mathrm{n}>=1$ is not regular language | UNDERSTAND <br> BT - L2 | C01 | $\begin{gather*} \hline \text { PI }  \tag{7}\\ 2.4 .4 \end{gather*}$ |
| 16. | Construct a regular expression corresponding to the state diagram | $\begin{aligned} & \text { APPLY } \\ & \text { BT - L3 } \end{aligned}$ | C01 | $\begin{gathered} \text { PI } \\ 3.2 .1 \end{gathered}$ |
| 17. | Describe Arden's theorem with an example (7) | UNDERSTAND BT - L2 | C01 | $\begin{gathered} \text { PI } \\ 2.2 .3 \end{gathered}$ |

## PART - C

| 1. | Construct NFA with epsilon for the $\mathrm{RE}=(\mathrm{a} \mid \mathrm{b})^{*} \mathrm{ab}$ and convert into DFA and further find the minimized DFA | APPLY <br> BT - L3 | C01 | $\begin{gathered} \text { PI } \\ 3.2 .1 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 2. | Construct a minimized DFA for the regular expression $(0+1)^{*}$ $\begin{equation*} (00+11)(0+1)^{*} \tag{15} \end{equation*}$ | $\begin{aligned} & \text { APPLY } \\ & \text { BT - L3 } \end{aligned}$ | C01 | $\begin{gathered} \hline \text { PI } \\ 3.2 .1 \end{gathered}$ |

## UNIT III CONTEXT FREE GRAMMAR AND LANGUAGES PART - A

1. | Write a Context Free Grammar for the |
| :--- |
| language consisting of equal number of a's |
| and b's |

| First possibility, $S \rightarrow 01 \mid 10$ |
| :--- |
| If length $>1$ then ND |
| S $\rightarrow 0$ 2020) |


| APPLY |
| :--- |
| BT $-\mathbf{L 3}$ |

Therefore, Context Free Grammar for the language consisting of equal number of a's and b's
S $\rightarrow 01|10| 0 S 1 \mid 1$ CO2 0

2. |  | Define Deterministic PDA | (AU ND | REMEMBER | CO2 | PI |
| :--- | :--- | :---: | :---: | :---: | :---: |
|  | $-2020)$ | BT - L1 |  | 1.4 .1 |  |

A PDA M $=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{q}_{0}, \mathrm{Z}_{0}, \mathrm{~F}\right)$ is deterministic if:

- For each $q$ in $Q$ and $Z$ in $\Gamma$, whenever $\delta(q, €, Z)$ is nonempty then $\delta(q, a, Z)$ is empty for all a in $\Sigma$.
- For no q in $\mathrm{Q}, \mathrm{Z}$ in $\Gamma$, and a in $\Sigma \mathrm{U}\{\epsilon\}$ does $\delta(\mathrm{q}, \mathrm{a}, \mathrm{Z})$ contains more than one element.

Ex: The PDA accepting \{wcw R|win ( $0+1$ ) * \}.
3. When do you say a grammar is ambiguous?

| (AU ND - | UNDERSTAND | CO2 | PI |
| :---: | :---: | :---: | :---: |
| 2019) | BT - L2 |  | 1.4 .1 |

A grammar is said to be ambiguous when a same input string is derived from more than one parse trees or derivations.
A CFG $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{P}, \mathrm{S})$ is ambiguous if there is atleast one string w in $\mathrm{T}^{*}$ is having two different parse trees ,each with the same root $S$ and same yield $w$.
4. Give a formal definition of Push Down

Automata?

| (AU ND - | REMEMBER | CO2 | PI |
| :--- | :---: | :---: | :---: |
| 2019) | BT - L1 |  | 1.4 .1 |

A PDA can be formally described as a 7 -tuple ( $\mathrm{Q}, \sum, \mathrm{S}, \delta, \mathrm{q}_{0}, \mathrm{I}, \mathrm{F}$ ) -

- $\quad \mathrm{Q}$ is the finite number of states
- $\quad \sum$ is input alphabet
- $S$ is stack symbols
- $\delta$ is the transition function: $\mathrm{Q} \times\left(\sum \cup\{\varepsilon\}\right) \times S \times \mathrm{Q} \times \mathrm{S}^{*}$
- $\mathrm{q}_{0}$ is the initial state $\left(\mathrm{q}_{0} \in \mathrm{Q}\right)$
- I is the initial stack top symbol $(\mathrm{I} \in \mathrm{S})$
- $F$ is a set of accepting states ( $F \in Q$ )

| 5. | What is meant by Context Free Grammar(CFG)? | REMEMBER | CO2 | PI |
| :--- | :--- | :---: | :---: | :---: |
|  | BT - L1 |  | 1.4 .1 |  |

Context Free Grammar is a grammar which have four components such as $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{P}, \mathrm{S})$

- A finite set of variables ' $V$ ' also called as non terminals
- A finite set of symbols called terminals T.
- $\mathrm{S} \subseteq \mathrm{V}$ is the start symbol or variable.
- A finite set of productions (P) or rules which is of the form

A $\longrightarrow \alpha$, Where A - variable
$\alpha-$ string of zero or more terminals and strings
6. Derive a string 'aababa' for the following Context Free

Grammar (CFG) S $\rightarrow \mathbf{a S X}|\mathbf{b} ; \mathbf{X} \rightarrow \mathbf{X b}| \mathbf{a}$

| APPLY | CO2 | PI |
| :--- | :--- | :---: |
| BT - L3 |  | 3.2 .1 |

S =>aSX
$=>a a S X X \quad[S \rightarrow a S X]$
=>aabXX [S $\rightarrow \mathrm{b}]$
$=>a a b X b X \quad[X \rightarrow X b]$
=>aababX $\quad[\mathrm{X} \rightarrow \mathrm{a}]$
$=>$ aababa $\quad[X \rightarrow a]$
Thus the given string is derived from the above grammar.
7. Generate CFG for a signed integer constant in C language

| APPLY | CO2 | PI |
| :--- | :---: | :---: |
| BT - L3 |  | 3.2 .1 |

The CFG for a signed integer constant in C language as follows,
C $\rightarrow 0 \mid$ S1N1
S1 $\rightarrow+$ |
N1 $\rightarrow$ D1D2
D1 $\rightarrow$ 1|2|3|4|5|6|7|8|9
D2 $\rightarrow 0 \mid \varepsilon$

- If $\mathrm{L}=\mathrm{N}(\mathrm{M} 1)$ for some PDA M1 ,then $\mathrm{L}=\mathrm{L}(\mathrm{M} 2)$ for some PDA M2
where $L(M)=$ language accepted by PDA by reaching a final state.
$\mathrm{N}(\mathrm{M})=$ language accepted by PDA by empty stack.

26. Construct a PDA that accepts the language generated by the grammar. $S \rightarrow a A B B, A \rightarrow a B|a, B \rightarrow b A| b$

| APPLY | CO2 | PI |
| :--- | :---: | :---: |
| BT - L3 |  | 3.2 .1 |

The PDA is given by

$$
\begin{aligned}
& A=(\{q\},\{a, b\},\{S, A, B, Z, a, b\}, \delta, q, S\} \\
& \text { where } \delta: \delta(q, z, S)=\{(q, a A B B)\} \\
& \delta(q, z, A)=\{(q, a B),(q, a)\} \\
& \delta(q, z, B)=\{(q, b A),(q, b)\} \\
& \delta(q, a, a)=\{(q, \varepsilon)\} \\
& \delta(q, b, b)=\{(q, \varepsilon)\}
\end{aligned}
$$

27. Is PDA superior over NFA in the sense of language

| REMEMBER | CO2 | PI |
| :---: | :---: | :---: |
| BT - L1 |  | 1.4 .1 |

acceptance? Justify your answer.
BT - L1
1.4.1

PDA is superior to NFA by having the following additional features.

- Stack which is used to store the necessary tape symbols and use the state to remember the conditions.
- Two ways of language acceptances, one by reaching its final state and another by emptying its stack.

28. $\quad$ Relate Context free language and DPDA

| UNDERSTAND | CO2 |
| :---: | :---: |
| BT - L2 |  |

PI
BT - L2
1.4.1

The languages accepted by the deterministic PDA by final state are properly included in the context free language,

- Each context free languages accepted by the DPDA have unambiguous grammar
- The DPDA languages are not exactly equal to the subset of the CFL that are not inherently ambiguous languages
- So if $\mathrm{L}=\mathrm{N}(\mathrm{P})$ for some DPDA P, then $L$ has an unambiguous CFG


## PART - B

| 1. | How e-productions are eliminated from a grammar whose language doesn't have empty string ? Remove $\in$-productions from the grammar given below. $\begin{align*} & \mathrm{S} \rightarrow \mathrm{a}\|\mathrm{aA}\| \mathrm{B}\|\mathrm{CA} \rightarrow \mathrm{aB}\| \in \mathrm{B} \rightarrow \mathrm{AaC} \rightarrow \mathrm{aCD}  \tag{13}\\ & \mathrm{D} \rightarrow \mathrm{ddd} \end{align*}$ | $\begin{aligned} & \hline \text { (AU ND } \\ & -2020) \end{aligned}$ | $\begin{aligned} & \text { APPLY } \\ & \text { BT - L3 } \end{aligned}$ | C02 | $\begin{gathered} \text { PI } \\ 3.2 .1 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2. | Write procedure to find PDA to CFG. Give an example for PDA and its CFG <br> (13) | $\begin{aligned} & \hline \text { (AU ND } \\ & -2020) \end{aligned}$ | $\begin{gathered} \text { UNDERSTAND } \\ \text { BT - L2 } \end{gathered}$ | C02 | $\begin{gathered} \text { PI } \\ 3.2 .1 \end{gathered}$ |
| 3. | Suppose L=L(G) for some CFG G=(V,T,P,S) then prove that $\mathrm{L}-\{\epsilon\}$ is $\mathrm{L}\left(\mathrm{G}^{\prime}\right)$ for a CFG $\mathrm{G}^{\prime}$ with no useless symbols or $\in$-production <br> (13) | $\begin{aligned} & \hline \text { (AU ND } \\ & -2019) \end{aligned}$ | $\begin{gathered} \text { UNDERSTAND } \\ \text { BT - L2 } \end{gathered}$ | CO2 | $\begin{gathered} \text { PI } \\ 2.3 .1 \end{gathered}$ |
| 4. | Prove that the languages accepted by Push Down Automata using empty stack and final states are equivalent | $\begin{aligned} & \hline \text { (AU ND } \\ & -2019) \end{aligned}$ | $\begin{gathered} \text { UNDERSTAND } \\ \text { BT - L2 } \end{gathered}$ | CO2 | $\begin{gathered} \text { PI } \\ 2.3 .1 \end{gathered}$ |
| 5. | (i). Find PDA that accept the given CFG: $\mathrm{X} \rightarrow \mathrm{ax}\|\mathrm{bx}\| \varepsilon$ <br> (ii). Construct PDA for the language $\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{m}} \mathrm{a}^{\mathrm{n}+\mathrm{m}}$ | $S \rightarrow \text { xaax, }$ <br> (7) (6) | $\begin{aligned} & \text { APPLY } \\ & \text { BT - L3 } \end{aligned}$ | C02 | $\begin{gathered} \text { PI } \\ 3.2 .1 \end{gathered}$ |
| 6. | (i). Prove that deterministic and non determin | istic PDA | UNDERSTAND | C02 | PI |


|  | are not equivalent <br> (ii). Explain pumping lemma for CFL | BT - L2 |  | 2.3.1 |
| :---: | :---: | :---: | :---: | :---: |
| 7. | (i). Construct a DPDA for even length palindrome. <br> (ii). Prove - if PDA P is constructed from CFG G then N(P) $\begin{equation*} =\mathrm{L}(\mathrm{G}) \tag{6} \end{equation*}$ | $\begin{aligned} & \hline \text { APPLY } \\ & \text { BT - L3 } \end{aligned}$ | C02 | $\begin{gathered} \text { PI } \\ 2.3 .1 \end{gathered}$ |
| 8. | Convert the following CFG to PDA and verify for (a+b) and a++ $\begin{aligned} & \mathrm{I} \rightarrow \mathrm{a}\|\mathrm{~b}\| \mathrm{Ia}\|\mathrm{Ib}\| \mathrm{IO} \mid \mathrm{I} 1 \\ & \mathrm{E} \rightarrow \mathrm{I}\|\mathrm{E}+\mathrm{E}\| \mathrm{E}^{*} \mathrm{E} \mid(\mathrm{E}) \end{aligned}$ | $\begin{aligned} & \text { APPLY } \\ & \text { BT - L3 } \end{aligned}$ | C02 | $\begin{gather*} \text { PI }  \tag{13}\\ 3.2 .1 \end{gather*}$ |
| 9. | Outline an instantaneous description of a PDA. (6) | $\begin{gathered} \text { REMEMBER } \\ \text { BT - L1 } \end{gathered}$ | C02 | $\begin{gathered} \text { PI } \\ \text { 2.1.2 } \end{gathered}$ |
| 10. | With an example, explain the procedure to obtain a PDA from the given CFG | UNDERSTAND BT - L2 | C02 | $\begin{gather*} \text { PI }  \tag{13}\\ \text { 2.1.2 } \end{gather*}$ |
| 11. | Design a PDA to accept $\left\{0^{\mathrm{n}} 1^{\mathrm{n}} \mid \mathrm{n}>1\right\}$. Draw the transition diagram for the PDA. Show by instantaneous description that the PDA accepts the string ' 0011 ' <br> (13) | $\begin{aligned} & \hline \text { APPLY } \\ & \text { BT - L3 } \end{aligned}$ | C02 | $\begin{gathered} \text { PI } \\ 3.2 .1 \end{gathered}$ |
| 12. | (i).Convert PDA to CFG. PDA is given by $\mathrm{P}=(\{p, q\},\{0,1\},\{X, Z\}, \delta, q, Z), \delta$ is defined by $\delta(p, 1, Z)=(p, X Z)\}, \quad \delta(p, \varepsilon, z)=\{(P, \varepsilon)\}, \quad \delta(p, 1, x)=\{(p, X X)\}$, $\delta(q, 1, X)=\{(q, \varepsilon)\}, \delta(p, 0, X)=\{(q, X)\}, \delta(q, 0, Z)=\{(p, Z)\} \quad$ (8) <br> (ii).What are DPDA? Give example for Non-deterministic and deterministic PDA. | $\begin{aligned} & \hline \text { APPLY } \\ & \text { BT - L3 } \end{aligned}$ | C02 | $\begin{gathered} \text { PI } \\ 3.2 .1 \end{gathered}$ |
| 13. | Construct a pushdown automata to accept the language $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} / \mathrm{n} \geq 1\right\}$ by empty stack and by final state. | $\begin{aligned} & \text { APPLY } \\ & \text { BT - L3 } \end{aligned}$ | C02 | $\begin{gathered} \text { PI } \\ 3.2 .1 \end{gathered}$ |
| 14. | Prove that if L is $\mathrm{N}(\mathrm{M} 1)$ (Language accepted by empty stack) for some PDA M1,then L is N(M2)(Language accepted by final state) for some PDA. <br> (13) | UNDERSTAND BT - L2 | C02 | $\begin{gathered} \text { PI } \\ \text { 2.1.2 } \end{gathered}$ |
| 15. | Constrcut Push Down Automata for the language $\mathrm{L}=\left\{\mathrm{ww}^{\mathrm{R}} \mid \mathrm{w}\right.$ in $\left.(\mathrm{a}+\mathrm{b})^{*}\right\}$. | $\begin{align*} & \text { APPLY } \\ & \text { BT - L3 } \tag{13} \end{align*}$ | C02 | $\begin{gathered} \text { PI } \\ 3.2 .1 \end{gathered}$ |
| 16. | Explain in detail about equivalence of pushdown automata. | $\begin{gathered} \text { REMEMBER } \\ \text { BT - L1 } \end{gathered}$ | C02 | $\begin{gathered} \text { PI } \\ \text { 2.1.2 } \end{gathered}$ |
| 17. | Give formal pushdown automata that accepts $\left\{\omega c \omega^{\mathrm{R}} \mid \omega\right.$ is in $\left.(0+1)^{*}\right\}$ by empty stack | $\begin{aligned} & \hline \text { APPLY } \\ & \text { BT - L3 } \end{aligned}$ | C02 | $\begin{gathered} \text { PI } \\ 3.2 .1 \end{gathered}$ |

## PART - C

| 1. | How PDA is converted into CFG ? Convert the following PDA into CFG. $\begin{aligned} & \mathrm{P}=(\{\mathrm{p}, \mathrm{q}\},\{0,1\},\{\mathrm{Z}, \mathrm{X}\}, \delta, \mathrm{p}, \mathrm{Z}, \Phi) \\ & \delta(\mathrm{p}, 1, \mathrm{Z})=\{(\mathrm{p}, \mathrm{XZ})\}, \delta(\mathrm{p}, \in, \mathrm{Z})=\{(\mathrm{p}, \in)\} \delta(\mathrm{p}, 1, \mathrm{X}) \\ & =\{(\mathrm{p}, \mathrm{XX})\}, \delta(\mathrm{q}, 1, \mathrm{X})=\{(\mathrm{q}, \in)\}, \delta(\mathrm{p}, 0, \mathrm{X})=\{(\mathrm{q}, \\ & \mathrm{X})\}, \delta(\mathrm{q}, 0, \mathrm{Z})=\{(\mathrm{p}, \mathrm{Z})\} \end{aligned}$ | $\begin{aligned} & \text { (AU ND } \\ & -2020) \end{aligned}$ | $\begin{aligned} & \hline \text { APPLY } \\ & \text { BT - L3 } \end{aligned}$ | CO2 | $\begin{gathered} \text { PI } \\ 3.2 .1 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2. | (i). Suppose $\mathrm{L}=\mathrm{N}(\mathrm{M})$ for some PDA M, then prove that L is a CFL <br> (ii). Give a CFG for the language $\mathrm{N}(\mathrm{M})$ where $\mathrm{M}=$ $\left(\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\},\{0,1\},\left\{\mathrm{Z}_{0}, \mathrm{X}\right\}, \delta, \mathrm{q}_{0}, \mathrm{Z}_{0}, \mathrm{q} 1\right)$ and $\delta$ is given by, | $\begin{aligned} & \text { (AU ND } \\ & -2019) \end{aligned}$ | $\begin{aligned} & \hline \text { APPLY } \\ & \text { BT - L3 } \end{aligned}$ | CO2 | $\begin{gathered} \text { PI } \\ 2.1 .2 \end{gathered}$ |


|  | $\begin{align*} & \hline \delta\left(\mathrm{q}_{0}, 1, \mathrm{Z}_{0}\right)=\left\{\left(\mathrm{q}_{0}, \mathrm{XZ}_{0}\right)\right\} \quad \delta\left(\mathrm{q}_{0}, \varepsilon, \mathrm{Z}_{0}\right)=\left\{\left(\mathrm{q}_{0}, \varepsilon\right)\right\} \\ & \delta\left(\mathrm{q}_{0}, 1, \mathrm{X}\right)=\left\{\left(\mathrm{q}_{0}, \mathrm{XX}\right)\right\} \delta\left(\mathrm{q}_{1}, 1, \mathrm{X}\right)=\left\{\left(\mathrm{q}_{1}, \varepsilon\right)\right\} \\ & \delta\left(\mathrm{q}_{0}, 0, \mathrm{X}\right)=\left\{\left(\mathrm{q}_{1}, \mathrm{X}\right)\right\} \delta\left(\mathrm{q}_{1}, 0, \mathrm{Z}_{0}\right)=\left\{\left(\mathrm{q}_{0}, \mathrm{Z}_{0}\right)\right\} \tag{8} \end{align*}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 3. | (i).Construct the PDA accepting the language $\left\{(\mathrm{ab})^{\mathrm{n}} \mid \mathrm{n} \geq 1\right\}$ by empty stack. <br> (ii).Constrcut a transition table for PDA which accepts the language $L=\left\{a^{2 n} b^{n} \mid n \geq 1\right\}$.Trace your PDA for the input with $\mathrm{n}=3$. | APPLY <br> BT - L3 | CO2 | $\begin{gather*} \text { PI }  \tag{7}\\ 3.2 .1 \end{gather*}$ |
| 4. | Let $\mathrm{M}=\left(\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\},\{0,1\},\left\{\mathrm{x}, \mathrm{z}_{0}\right\}, \delta, \mathrm{q}_{0}, \mathrm{z}_{0}, \mathrm{q}_{1}\right)$ where $\delta$ is given by $\delta$ $\left(\mathrm{q}_{0}, 0, \mathrm{z}_{0}\right)=\left\{\left(\mathrm{q}_{0}, \mathrm{xz}_{0}\right)\right\}, \quad \delta\left(\mathrm{q}_{1}, 1, \mathrm{x}\right)=\left\{\left(\mathrm{q}_{1}, \varepsilon\right)\right\}, \quad \delta\left(\mathrm{q}_{0}, 0, \mathrm{x}\right)=\left\{\left(\mathrm{q}_{0}, \mathrm{xx}\right)\right\}$, $\delta\left(\mathrm{q}_{1}, \varepsilon, \mathrm{x}\right)=\left\{\left(\mathrm{q}_{1}, \varepsilon\right)\right\} \delta\left(\mathrm{q}_{1}, \varepsilon, \mathrm{z}_{0}\right)=\left\{\left(\mathrm{q}_{1}, \varepsilon\right)\right\}$ Construct a CFG for the PDA. | $\begin{aligned} & \hline \text { APPLY } \\ & \text { BT - L3 } \end{aligned}$ | CO2 | $\begin{gathered} \text { PI } \\ 3.2 .1 \end{gathered}$ |

## UNIT IV

## PROPERTIES OF CONTEXT FREE LANGUAGES

## PART - A

| 1. | What are the two normal forms of CFG ? <br> Write their productions format. | (AU ND- <br> $2020)$ | REMEMBER <br> BT - L1 | CO2 | PI |
| :--- | :--- | :---: | :---: | :---: | :---: |

The two normal forms of CFG are,

- Chomsky Normal Form (CNF)
- General Format of CNF is $A \rightarrow B C \mid a$
- Greibach Normal Form (GNF)
- General Format of GNF is A $\rightarrow \mathrm{a} \alpha$

| 2. | Define the language recognized by any <br> Turing Machine. | (AU ND- <br> $2020 /$ <br> $2019)$ | REMEMBER <br> BT - L1 | CO3 | PI |
| :--- | :--- | :---: | :---: | :---: | :---: |
|  |  |  | 1.4 .1 |  |  |

The language recognized by a Turing machine is, by definition, the set of strings it accepts.
When an input is given to the machine, it is either accepted or not. Any particular input to that machine is either always accepted (in the language) or always not accepted (not in the language).

| 3. | What are the advantages of having a <br> normal form for a grammar? | (AU ND - <br> $2019)$ | REMEMBER <br> BT - L1 | CO2 | PI <br> 1.4 .1 |
| :--- | :--- | :---: | :---: | :---: | :---: |

There are two advantages of having a normal form for a grammar

- Simplicity of proofs - There are plenty of proofs around context-free grammars, including reducibility and equivalence to automata. Those are the simpler the more restricted the set of grammars
- Enables parsing - Normal forms can give us more structure to work with, resulting in easier parsing algorithms.
$\left.\begin{array}{|l|l|c|c|c|}\text { 4. } & \begin{array}{l}\text { What are the closure properties of context free } \\ \text { languages? }\end{array} & \text { REMEMBER } & \text { CO2 } & \text { PI } \\ \text { BT }- \text { L1 }\end{array}\right]$

The closure properties of CFL are

- Context free languages are closed under union.
- Context free languages are closed under concatenation.
- Context free languages are closed under kleene closure.
- Context free languages are not closed under intersection.

Let ' $L$ ' be a CFL. Then there exists a constant ' $n$ ' such that if $Z$ is any string in ' $L$ ' such that $|Z|$ is atleast $n$, then we can write $\mathrm{Z}=\mathrm{uvwxy}$ with the following condition,
i. $|v w x| \leq n$
ii. $\mathrm{vx} \neq \varepsilon$
iii. for all $i \geq 0$, uviwxiy is in $L$
6. $\quad$ Show that $L=\left\{a^{p} \mid p\right.$ is prime $\}$ is not context free
UNDERSTAND

CO2
PI
BT- L2
2.4.4

To prove the given language is not context free, the steps are as follows,

- Choose the pumping length of $p$.
- Consider some prime $n \geq p+2$.
- Such an $n$ must exist since there are an infinite number of primes.
- Let $s=1^{n}$,
- The string is broken into uvxyz.
- Let $|v y|=m$.
- Then, $|u x z|=n-m$.
- By the pumping lemma, $u v^{n-m_{X}} y^{n-m_{Z}} \in L$
- $\left|u v^{n-m} x y^{n-m} z\right|=|u x z|+(n-m) \times(|v|+|y|)=n-m+(n-m) m=(n-m)(m+1)$
- Thus, $\left|u v^{n-m} x y^{n-m} z\right|$ is not prime unless one of the above factors is 1 . So that the given language is not context free.
$\left.\begin{array}{|l|l|c|c|c|}\text { 7. } & \text { Define Turing Machine } & \text { REMEMBER } & \text { CO3 } & \text { PI } \\ \text { BT - L1 }\end{array}\right]$

Turing machines are an abstract model of computation. They provide a precise, formal definition of what it means for a function to be computable. The key features of the Turing machine model of computation are:

- A finite amount of internal state.
- An infinite amount of external data storage.
- A program specified by a finite number of instructions in a predefined language.
- Self-reference: the programming language is expressive enough to write an interpreter for its own programs

8. $\quad$ Give the configuration of Turing Machine

| REMEMBER | CO3 | PI |
| :---: | :---: | :---: |
| BT - L1 |  | 1.4 .1 |

The configuration of Turing machine is a collection of 7 tuples
$\mathrm{M}=\left(\mathrm{Q}, \sum, \Gamma, \delta, \mathrm{q} 0, \Delta, \mathrm{orB}, \mathrm{F}\right)$

- $\quad \mathrm{Q}$ is a finite set of states.
- $r$ is a finite set of external symbols.
- $\quad \sum$ is a finite set of input symbols.
- $\Delta$ or B is a blank symbol used as an end marker for input.
- $\delta$ is a transition function.
- Ex: $\delta(q 0, \mathrm{a})->(\mathrm{q}, \mathrm{A}, \mathrm{L})$
- Reading the input symbol 'a', transition made from q0 state to q1 by printing (replacing) 'a' by 'A' and move ahead to left.
- q 0 be the start state $\mathrm{q} 0 \in \mathrm{Q}$.
- F is a set of final state, where the turing machine halts.

For any symbol if there is no derivation to generate a terminal string then that symbol is called useless symbol. All the useless symbols from the production rule must be identified and removed to produce the reduced grammar.
28. Define simplification of CFG.
REMEMBER

Elimination of null and unit productions and symbols is called simplification of CFG. The result of simplified context free grammar is known as reduced grammar. The reduction of context free grammar can be carried out in three ways.

- Removal of useless symbols
- Elimination of $\varepsilon$-productions
- Removal of unit productions.


## PART - B

| 1. | How a CFG for L is converted into CNFaccepting the same language ? Convertthe following CFG into CFG in CNF.(13) <br> S -> b A $\mid$ a B A $->$ b A A $\mid$ a $S \mid a \operatorname{B~} \rightarrow$ a B B $\mid$b S \| b | $\begin{gathered} \text { UNDERSTAND } \\ \text { BT - L2 } \end{gathered}$ | CO2 | $\begin{gathered} \text { PI } \\ 2.2 .3 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 2. | Construct a Turing Machine for propersubtraction, which is defined as $m-n$if $m>n$ and 0 otherwise.2020) | $\begin{gathered} \hline \text { UNDERSTAND } \\ \text { BT - L2 } \end{gathered}$ | CO4 | $\begin{gathered} \text { PI } \\ 2.2 .3 \end{gathered}$ |
| 3. | State and prove GNF (13) (AU ND - <br>    | $\begin{gathered} \text { UNDERSTAND } \\ \text { BT - L2 } \end{gathered}$ | CO2 | $\begin{gathered} \text { PI } \\ \text { 2.4.4 } \end{gathered}$ |
| 4. | Design a TM to compute proper subtraction (AU ND - <br> (13) $\mathbf{2 0 1 9 )}$ | $\begin{aligned} & \hline \text { APPLY } \\ & \text { BT - L3 } \end{aligned}$ | CO4 | $\begin{gathered} \text { PI } \\ 2.2 .3 \end{gathered}$ |
| 5. | Consider two tape TM and determine whether the TM always writes a nonblank symbol on its second tape during the computation on any input string ' $w$ '. Formulate this problem as a language and show it is undecidable. | $\begin{aligned} & \hline \text { APPLY } \\ & \text { BT - L3 } \end{aligned}$ | CO4 | $\begin{gathered} \text { PI } \\ 2.2 .3 \end{gathered}$ |
| 6. | Construct TM that replace all occurrence of 111 by 101 from sequence of 0's and 1's. | $\begin{aligned} & \text { APPLY } \\ & \text { BT - L3 } \end{aligned}$ | CO4 | $\begin{gathered} \text { PI } \\ 2.2 .3 \end{gathered}$ |
| 7. | (i). Explain techniques for TM Construction <br> (ii). Illustrate the Chomsky grammar classification with necessary example | $\begin{gathered} \text { REMEMBER } \\ \text { BT - L1 } \end{gathered}$ | CO3 | $\begin{gathered} \text { PI } \\ 2.2 .3 \end{gathered}$ |
| 8. | Construct a TM to reverse the given string. (13) | $\begin{aligned} & \hline \text { APPLY } \\ & \text { BT - L3 } \end{aligned}$ | CO4 | $\begin{gathered} \text { PI } \\ 2.2 .3 \end{gathered}$ |
| 9. | Design a Turing machine to accept language $\mathrm{L}=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} / \mathrm{n}>=1\right\}$ and simulate its action on the input 0011. <br> (13) | $\begin{aligned} & \hline \text { APPLY } \\ & \text { BT - L3 } \end{aligned}$ | CO4 | $\begin{gathered} \text { PI } \\ 2.2 .3 \end{gathered}$ |
| 10. | Explain Turing machine as a computer of integer functions with an example. | $\begin{gathered} \text { REMEMBER } \\ \text { BT - L1 } \end{gathered}$ | CO4 | $\begin{gathered} \text { PI } \\ 2.2 .3 \\ \hline \end{gathered}$ |
| 11. | i.Design a Turing Machine to recognize $\left\{\mathrm{ww} \mathrm{w}^{\wedge} \mathrm{R} \\| \mathrm{w}\right.$ ? | APPLY | CO4 | PI |


|  | $\begin{equation*} \left.(0+1)^{*}\right\} . \tag{7} \end{equation*}$ <br> ii. Design TM M for $f(x, y)=x * y$ where $x, y$ are stored in the tape in the form $0 \times 10 \mathrm{y} 1$. | BT - L3 |  | 2.2.3 |
| :---: | :---: | :---: | :---: | :---: |
| 12. | Show that the language $\mathrm{L}=\left\{\mathrm{a}^{\left.\mathrm{i} b^{i} \mathrm{c}^{i} / \mathrm{i}>=1\right\} \text { is not context free. }}\right.$ <br> (7) | $\begin{gather*} \text { REMEMBER }  \tag{6}\\ \text { BT - L1 } \end{gather*}$ | CO2 | $\begin{gathered} \text { PI } \\ 2.4 .4 \end{gathered}$ |
| 13. | Obtain a grammar in Chomsky Normal Form (CFG) equivalent to the grammar G with the productions P given. $\mathrm{S} \rightarrow a A b B, \mathrm{~A} \rightarrow a A\|a, \mathrm{~B} \rightarrow b B\| b$ | $\begin{aligned} & \text { APPLY } \\ & \text { BT - L3 } \end{aligned}$ | CO2 | $\begin{gathered} \text { PI } \\ 2.2 .3 \end{gathered}$ |
| 14. | Construct a equivalent grammar $G$ in CNF for the grammar G1 where $\mathrm{G} 1=(\{\mathrm{S}, \mathrm{A}, \mathrm{B}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{S} \rightarrow \mathrm{ASB} \mid \boldsymbol{\varepsilon}$, $A \rightarrow a A S\|a, B \rightarrow S b S\| A \mid b b\}, S)$. | $\begin{aligned} & \hline \text { APPLY } \\ & \text { BT - L3 } \end{aligned}$ | CO2 | $\begin{gathered} \text { PI } \\ 2.2 .3 \end{gathered}$ |
| 15. | Convert the following grammar into GNF. $S \rightarrow>X Y 1\|0, X \rightarrow 00 X\| Y, Y \rightarrow 1 X 1$ | $\begin{align*} & \text { APPLY }  \tag{13}\\ & \text { BT - L3 } \end{align*}$ | CO2 | $\begin{gathered} \text { PI } \\ 2.2 .3 \end{gathered}$ |
| 16. | Convert the following grammar into an equivalent one with no unit productions and no useless symbols $S$-> $\mathrm{ABA}, \mathrm{A}->\mathrm{aAA}\|\mathrm{aBc}\| \mathrm{bB}, \mathrm{B}->\mathrm{A}\|\mathrm{bB}\| \mathrm{Cb}, \mathrm{C}->\mathrm{CC} \mid \mathrm{cC}$ <br> (13) | $\begin{aligned} & \hline \text { APPLY } \\ & \text { BT - L3 } \end{aligned}$ | CO2 | $\begin{gathered} \text { PI } \\ 2.2 .3 \end{gathered}$ |

PART - C

| 1. | Construct a Turing Machine for multiplying two non negative integers using subroutine <br> (15) | $\begin{aligned} & \text { (AU ND - } \\ & \text { 2020) } \end{aligned}$ | $\begin{aligned} & \text { APPLY } \\ & \text { BT - L3 } \end{aligned}$ | CO2 | $\begin{gathered} \text { PI } \\ 2.2 .3 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2. | (i).Design a TM to compute multiplication of two positive integers <br> (ii).Design a TM to recognize the language <br> $\left\{0^{n} 1^{n} 0^{n} \mid n>=1\right\}$ | $\begin{aligned} & \text { (AU ND - } \\ & \text { 2019) } \end{aligned}$ | $\begin{aligned} & \text { APPLY } \\ & \text { BT - L3 } \end{aligned}$ | CO4 | $\begin{gathered} \text { PI } \\ 3.2 .1 \end{gathered}$ |
| 3. | Design a Turing machine to accept language L and simulate its action on the input $\mathrm{n}=3$. | $\left\{a^{n} b^{n} / n>=1\right\}$ | $\begin{aligned} & \text { APPLY } \\ & \text { BT - L3 } \end{aligned}$ | C03 | $\begin{gather*} \text { PI }  \tag{15}\\ 3.2 .1 \end{gather*}$ |

## UNIT V <br> UNDECIDABILITY <br> PART - A

| 1. | What are recursive language? | $\begin{aligned} & \text { (AU ND - } \\ & 2020) \end{aligned}$ | $\begin{gathered} \text { REMEMBER } \\ \text { BT - L1 } \end{gathered}$ | C05 | $\begin{gathered} \text { PI } \\ \text { 1.4.1 } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | A language is recursive if there exists language and rejects the string that is | ng Machin the langua <br> Yes <br> No | accepts every | g of |  |
| 2. | Define the classes $P$ and NP problem Give example problems for both | $\begin{aligned} & \text { (AU ND - } \\ & \text { 2020) } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { REMEMBER } \\ \text { BT - L1 } \end{gathered}$ | C05 | $\begin{gathered} \text { PI } \\ 1.4 .1 \end{gathered}$ |
| - Class P: The problem solvable in polynomial time on a typical computer are exactly the same as the problems solvable in polynomial time on a Turing machine. <br> Ex: Kruskal's Algorithm <br> - Class NP: The problems which cannot be solvable in polynomial time are called intractable problem. |  |  |  |  |  |

Example for NP-complete problems are,

- 0/1 Knapsack problem.
- Hamiltonian cycle.
- Travelling salesman problem.

3. When do you say a Turing machine is an algorithm?

| (AU ND - | UNDERSTAND | CO5 | PI |
| :--- | :---: | :---: | :---: |
| 2019) | BT - L2 |  | 1.4.1 |

A Turing machine is a mathematical model of computation that defines an abstract machine, which manipulates symbols on a strip of tape according to a table of rules. Despite the model's simplicity, given any computer algorithm, a Turing machine capable of simulating that algorithm's logic can be constructed.

| 4. | Define NP - Class | (AU ND - | REMEMBER | CO5 | PI |
| :--- | :--- | :--- | :---: | :---: | :---: |
|  | 2019) | BT - L1 |  | 1.4 .1 |  |

Class NP problems are problems which are non-deterministic problems solved in polynomial time.
Example: TSP problem.
5. List the properties of recursive and recursive enumerable language.

| REMEMBER | CO5 | PI |
| :---: | :---: | :---: |
| BT - L1 |  | 1.4.1 |

The properties of recursive and Recursively Enumerable Language

- The complement of a Recursive language is Recursive.
- The union of two recursive languages is recursive. The union of two Recursively Enumerable languages is RE.
- If a language $L$ and complement $L$ are both RE, then $L$ is recursive.

6. Write short notes on tractable problem
REMEMBER
BT - L1 CO5 PI BT - L1 1.4.1

The problems which are solvable by polynomial time algorithms are called tractable problems.
For example: The complexity of the Kruskal's algorithm is $0(\mathrm{e}(\mathrm{e}+\mathrm{m}))$ where e , the number of edges and $m$,the number of nodes.
7. What is primitive recursive function?

| REMEMBER | CO5 | PI |
| :---: | :---: | :---: |
| BT - L1 |  | 1.4 .1 |

The set PR of primitive recursive function is defined as follows:

- All initial function are elements of PR.

For any $\mathrm{k}>=0$ and $\mathrm{m}>=0$, if $\mathrm{f}: \mathrm{N}^{\mathrm{m}}->\mathrm{N}$ and $\mathrm{g}_{1}, \mathrm{~g}_{2}, \ldots . . \mathrm{g}_{\mathrm{k}}: \mathrm{N}^{\mathrm{m}}->\mathrm{N}$ are elements of $P R$, then the function $f\left(g_{1}, g_{2}, \ldots \ldots . . g_{k}\right)$ obtained from $f$ and $g_{1}, g_{2} \ldots . . . . g_{k}$ by composition is an element of PR.
8. Define NP Completeness

| REMEMBER | CO5 | PI |
| :---: | :---: | :---: |
| BT - L1 |  | 1.4 .1 |

A language L is NP - complete if the following statements are true

- L is in NP
- For every language L' in NP there is a polynomial - time reduction of L' to L .

9. Define NP-hard and NP-completeness problem.

| REMEMBER | CO5 |
| :---: | :---: |
| BT - L1 |  |

- NP Hard: if a problem A is reducible to B, then it means that B is at least as hard as A. The problem A is not solved in polynomial time $T$.
- NP-Complete:The group of problems which are both in NP and NP-hard are known as NP-Complete problem.

The CNF Satisfiability Problem (CNF-SAT) is a version of the Satisfiability Problem, where the Boolean formula $\mathrm{f}(\mathrm{x} 1, \mathrm{x} 2, \ldots, \mathrm{xn}$ ), is specified in the Conjunctive Normal Form (CNF), that means that it is a conjunction of clauses, where a clause is a disjunction of literals, and a literal is a variable or its negation.

| 26. | What is the measuring complexity for NFA? | REMEMBER | CO5 | PI |
| ---: | :--- | :---: | :---: | :---: |
| BT - L1 |  |  |  |  |

## Time Complexity for NFA:

Let T be a non-deterministic TM t , which accepts language L over alphabet $\sum$.The time complexity $\mathrm{T}_{\mathrm{t}}(\mathrm{n})$ is the minimum number of moves t can make an any input string of length n.

## Space Complexity for NFA:

Space complexity of a non-deterministic TM $\mathrm{St}_{\mathrm{t}}(\mathrm{n})$ is the minimum number of tape squares used by TM for any input string of length $n$.

PART - B

| 1. | Prove that Universal language is recursively enumerable but not recursive. | $\begin{array}{\|l} \hline \text { (AU ND - } \\ \text { 2020) } \\ \hline \end{array}$ | UNDERSTAND <br> BT - L2 | C05 | $\begin{gathered} \text { PI } \\ 1.4 .1 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2. | Define PCP and prove that PCP is undecidable | $\begin{aligned} & \hline \text { (AU ND - } \\ & \text { 2020) } \end{aligned}$ | $\begin{gathered} \text { REMEMBER } \\ \text { BT - L1 } \end{gathered}$ | C05 | $\begin{gathered} \text { PI } \\ 1.4 .1 \end{gathered}$ |
| 3. | Prove that Post Correspondence Problem is undecidable <br> (13) | $\begin{array}{\|l} \hline \text { (AU ND - } \\ \text { 2019) } \\ \hline \end{array}$ | UNDERSTAND BT - L2 | C05 | $\begin{gathered} \hline \text { PI } \\ 1.4 .1 \end{gathered}$ |
| 4. | Prove that the $\mathrm{Lu}_{\mathrm{u}}$ is recursively enumerable but not recursive | $\begin{aligned} & \hline \text { (AU ND - } \\ & \text { 2019) } \end{aligned}$ | UNDERSTAND BT - L2 | C05 | $\begin{gathered} \text { PI } \\ \text { 1.4.1 } \end{gathered}$ |
| 5. | Explain universal Turing machine | (13) | $\begin{gathered} \text { REMEMBER } \\ \text { BT - L1 } \end{gathered}$ | C05 | $\begin{gathered} \text { PI } \\ 1.4 .1 \end{gathered}$ |
| 6. | Explain how to measure and classify compl | . (13) | $\begin{gathered} \text { REMEMBER } \\ \text { BT - L1 } \end{gathered}$ | C05 | $\begin{gathered} \text { PI } \\ 1.4 .1 \end{gathered}$ |
| 7. | Explain recursive and recursively enumerab with example | languages <br> (13) | $\begin{gathered} \text { REMEMBER } \\ \text { BT - L1 } \\ \hline \end{gathered}$ | C05 | $\begin{gathered} \text { PI } \\ 1.4 .1 \end{gathered}$ |
| 8. | Explain tractable and intractable problem wi example | h suitable <br> (13) | $\begin{gathered} \text { REMEMBER } \\ \text { BT - L1 } \end{gathered}$ | C05 | $\begin{gathered} \text { PI } \\ 1.4 .1 \end{gathered}$ |
| 9. | Elaborate on primitive recursive functions w example | an <br> (8) | $\begin{gathered} \text { REMEMBER } \\ \text { BT - L1 } \end{gathered}$ | C05 | $\begin{gathered} \text { PI } \\ 1.4 .1 \end{gathered}$ |
| 10. | Outline the concept of polynomial time redu | ns. (6) | $\begin{gathered} \text { REMEMBER } \\ \text { BT - L1 } \end{gathered}$ | C05 | $\begin{gathered} \text { PI } \\ 1.4 .1 \end{gathered}$ |
| 11. | Prove that "MPCP reduces to PCP" | (7) | UNDERSTAND BT - L2 | C05 | $\begin{gathered} \text { PI } \\ 1.4 .1 \end{gathered}$ |
| 12. | State and explain RICE theorem | (7) | $\begin{gathered} \text { REMEMBER } \\ \text { BT - L1 } \end{gathered}$ | C05 | $\begin{gathered} \text { PI } \\ 1.4 .1 \end{gathered}$ |
| 13. | Show that union of two recursive language is and union of two RE language is recursive. | recursive <br> (6) | UNDERSTAND BT - L2 | C05 | $\begin{gathered} \text { PI } \\ 1.4 .1 \end{gathered}$ |
| 14. | Explain about "A language that is not Recursi Enumerable". | ely <br> (6) | REMEMBER BT - L1 | C05 | $\begin{gathered} \text { PI } \\ 1.4 .1 \end{gathered}$ |
| 15. | Prove $\mathrm{L}_{\text {ne }}$ is recursively enumerable. | (7) | UNDERSTAND BT - L2 | C05 | $\begin{gathered} \text { PI } \\ 1.4 .1 \end{gathered}$ |

Subject Code / Name: CS8501 / Theory of Computation

| 16. | Prove that if a language is recursive iff it \& its complement are both RE | $\begin{array}{\|c\|} \hline \text { UNDERSTAND } \\ \text { BT - L2 } \\ \hline \end{array}$ | CO5 | $\begin{gathered} \text { PI } \\ \text { 1.4.1 } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 17. | Explain about undecidability of PCP. (6) | $\begin{gathered} \text { REMEMBER } \\ \text { BT - L1 } \end{gathered}$ | C05 | $\begin{gathered} \text { PI } \\ 1.4 .1 \end{gathered}$ |
| 18. | Define PCP.Let $\sum\{0,1\}$.Let A and B be the lists of three strings each defined as, $\mathrm{Wi}=\mathrm{A}=\{1,10111,10\}$, $X i=B=\{111,10,0\}$, Does this PCP have a solution? (6) | $\begin{gathered} \text { REMEMBER } \\ \text { BT - L1 } \end{gathered}$ | C05 | $\begin{gathered} \text { PI } \\ 1.4 .1 \end{gathered}$ |
| 19. | Prove that the function $f$ add $(x, y)=x+y$ is a primitive recursive. | UNDERSTAND BT - L2 | C05 | $\begin{gather*} \text { PI }  \tag{7}\\ 1.4 .1 \end{gather*}$ |

# QUESTION PAPER CODE: 90159 <br> B.E / B.Tech DEGREE EXAMINATIONS, NOV / DEC 2019 <br> Fifth Semester <br> Computer Science and Engineering <br> CS8501 - Theory of Computation <br> (Regulation 2017) 

## Time: 3 Hrs

Maximum: 100

## Marks

Answer All questions
PART - A (10 * $2=20)$

1. Prove by induction on $n>=1$ that $\sum 1 / i(i+1)=n /(n+1) i=1$
2. Formally define Deterministic Finite Automata (DFA).
3. Construct regular expression corresponding to the state diagram

4. State the definition of pumping lemma for regular set.
5. When do you say a grammar is ambiguous?
6. Give a formal definition of Push Down Automata?
7. What are the advantages of having a normal form for a grammar?
8. Define the language recognized by the Turing Machine
9. When do you say a Turing machine is an algorithm?
10. Define NP - Class

## PART - B

11. a) Construct a Deterministic Finite Automata equivalent to the NFA $M=\{\{p, q, r, s\},\{0,1\}, \delta$ $\mathrm{p},\{\mathrm{s}\})$ where $\delta$ is given by

| $\delta$ | 0 | 1 |
| :--- | :--- | :--- |
| p | $\{\mathrm{p}, \mathrm{q}\}$ | $\{\mathrm{p}\}$ |
| q | $\{\mathrm{r}\}$ | $\{\mathrm{r}\}$ |
| r | $\{\mathrm{s}\}$ | - |
| s | $\{\mathrm{s}\}$ | $\{\mathrm{s}\}$ |

(OR)
b) Give NFA accepting the set of strings in $(0+1)^{*}$ such that two 0 's are separated by a string whose length is 4 i , for some $\mathrm{i}>=0$
12. a).(i).Prove that any language accepted by a Deterministic Finite Automata can be represented by a regular expression
(7)
(ii). Construct a FA for the regular expression $10+(0+11) 0^{*} 1$.
b).Prove that the following languages are not regular: (i). $\left\{\mathrm{w} \in\{\mathrm{a}, \mathrm{b}\}^{*} \mid \mathrm{w}=\mathrm{wR}\right\}$
(ii). Set of strings of 0 's and 1 's beginning with a 1 whose value treated as a binary number is a prime.
13. a) Suppose $L=L(G)$ for some $C F G G=(V, T, P, S)$ then prove that $L-\{\in\}$ is $L\left(G^{\prime}\right)$ for a CFG $G^{\prime}$ with no useless symbols or $\in$-productions.
(OR)
b) Prove that the languages accepted by Push Down Automata using empty stack and final states are equivalent
14. a) State and prove Greibach Normal Form
b) Design a TM to compute proper subtraction
15. a) Prove that Post Correspondence Problem is undecidable (OR)
b) Prove that the Lu is recursively enumerable but not recursive

## PART - C

17. a)(i). Suppose $L=N(M)$ for some PDA $M$, then prove that $L$ is a CFL (7)
(ii). Give a CFG for the language $N(M)$ where $M=(\{q 0, q 1\},\{0,1\},\{Z 0, X\}, \delta, q 0, Z 0, \phi)$ and $\delta$ is given by, $(8) \delta(q 0,1, Z 0)=\{(q 0, X Z 0)\} \delta(q 0, \varepsilon, Z 0)=\{(q 0, \varepsilon)\} \delta(q 0,1, X)=\{(q 0, X X)\} \delta(q 1,1, X)=\{(q 1, \varepsilon)\}$ $\delta(q 0,0, X)=\{(q 1, X)\} \delta(q 1,0, Z 0)=\{(q 0, Z 0)\}$
b)(i).Design a TM to compute multiplication of two positive integers
(ii).Design a TM to recognize the language $\left\{0^{\mathrm{n}} 1^{\mathrm{n}} 0^{\mathrm{n}} \mid \mathrm{n}>=1\right\}$

QUESTION PAPER CODE: X10319

# B.E./B.Tech. DegreeExaminationS, November/December2020 <br> Fifth SemesterComputer Science and Engineering CS 8501 - THEORY OF COMPUTATION 

(Regulations 2017)

## Time : Three Hours

Maximum : 100 Marks

## Answer all questions

Part- A (10×2 = $\mathbf{2 0}$ Marks)

1. Define Deterministic Finite Automaton.
2. State any four types of proofs.
3. Write the regular expression for all strings that contain no more than one occurrence of aa.
4. Write a regular expression for even number of a's and even number of b's of a string $w=\{a$, b) ${ }^{*}$.
5. Write a Context Free Grammar for the language consisting of equal number of a's and b's.
6. Define Deterministic PDA.
7. What are the two normal forms of CFG? Write their productions format.
8. Define the language recognized by any Turing Machine.
9. What are recursive languages?
10. Define the classes P and NP problem. Give example problems for both.

$$
\text { Part- B (5×13 = } 65 \text { Marks) }
$$

11. a) Prove that for every Lrecognized by an NFA, there exists an equivalent DFA accepting the same language L .
(OR)
b) Prove that for every Lrecognized by an $\in-N F A$, there exists an equivalent DFA accepting the same language L .
12. a) Prove that the following languages are not regular using pumping lemma.
i) All unary strings of length prime.
ii) $L=\left\{u u \mid u \in\{0,1\}^{*}\right\}$.
b) State and Prove any two closure properties of Regular Languages.
13. a) How $\in$-productions are eliminated from a grammar whose language doesn't have empty string ? Remove $\epsilon$-productions from the grammar given below. $S \rightarrow a|a A| B|C A \rightarrow a B| \in B$ $\rightarrow$ Aa C $\rightarrow$ aCD D $\rightarrow$ ddd
b) Write procedure to find PDAto CFG. Give an example for PDAand its CFG.
14. a) How a CFGfor Lis converted into CNF accepting the same language ? Convert the

(OR)
b) Construct a Turing Machine for proper subtraction, which is defined as $m-n$ if $m>n$ and 0 otherwise.
15. a) Prove that Universal language is recursively enumerable but not recursive.
(OR)
b) Define PCP and prove that PCP is undecidable.

$$
\text { Part- C ( } 1 \times 15=15 \text { Marks })
$$

16. a) Construct a Turing Machine for multiplying two non negative integers using subroutine.
b) How PDAis converted into CFG? Convert the following PDAinto CFG. $P=(\{p, q\},\{0,1\},\{Z$, $X\}, \delta, p, Z, \Phi) \delta(p, 1, Z)=\{(p, X Z)\}, \delta(p, \in, Z)=\{(p, \in)\} \delta(p, 1, X)=\{(p, X X)\}, \delta(q, 1, X)=\{(q$, $\in)\}, \delta(p, 0, X)=\{(q, X)\}, \delta(q, 0, Z)=\{(p, Z)\}$



## Attendance and Assessment Record

Name of the Staff
Name of the Subject
Branch
Semester
:S.Puvanesuarl Dept CSF
:Theory Def Compurgation code Cos sol CSS
$\qquad$ V

Date of Commencement $: \underline{18.08 .2021}$ Last Working Day 201. 2022


| Attendance Particulars |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Name | Date | 19 | 24 | 25 | 26 | 27 | 31 | 1 | 2 |  |  |
|  |  | Month | 8 | 8 | 8 | 8 | 8 | 8 | 9 | 9 | 9 |  |
|  |  | Period | 5 | 3 | 1 | 5 | 4 | 3 | 1 | 5 | 4 |  |
| 1 | R. Abrsth |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| 2 | S. AYYAPPAN |  | 1 | A | A | 1 | 1 | 1 | 1 |  | 1 |  |
| 3 | G.S. Asay Prasanima |  | 1 | 1 | 1 | A | 1 | 1 | 1 |  | 1 |  |
| 4 | K. AKASH |  | 1 | 1 | 1 | 1 | 1 | A | 1 | 1 | 1 |  |
| 5 | C. AkStayblakshmi |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| 6 | A. Aravind |  | 1 | 1 | 1 | A | 1 | 1 | 1 | 1 | 1 | 1 |
| 7 | A.B. Avudaiappan |  | 1 | 1 | 1 | A | 1 | 1 | 1 | 1 | 1 |  |
| 8 | A. bakya lakshmi |  | 1 | A | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| 9 | m. BAIAKRISHAPN |  | 1 | 1 | 1 | A | 1 | 1 | 1 | 1 | 1 |  |
| 10 | S. Bavyb |  | 1 | 1 | 1 | 1 | 1 | 1 | A | 1 | 1 |  |
| 11 | T. BHAYATHARANI |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| 12 | P. DEFPIKA |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |  |
| 13 | S. Dfuppiya |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |  |  |
| 14 | G. DHARANI |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |  |
| 15 | J. DIVAKARAN |  | 1 | 1 | 1 |  |  |  |  |  |  |  |
| 16 | T. Elayamharshinl |  |  |  | 1 | 1 | 1 | 1 | 1 | 1 |  |  |
| 17 | J. Faglia Afreen |  | 1 | A | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| 18 | m. Coblul |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| 19 | A. Gomatil |  | 1 | 1 | 1 | m | 1 | 1 | 1 | 1 | 1 |  |
| 20 | P. Gopinamt |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | A |  |
| 21 | K. Gound dharajan |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| 22 | K. KAmal |  | 1 | 1 | 1 | 1 | 1 | 1 |  | 1 |  |  |
| 23 | K. KANISHKAR |  | 1 | A | 1 | A | 1 |  |  |  | 1 | , |
| 24 | N. KARKUVHBL |  | A | 1 | , | 1 | , | 1 | A | 1 |  |  |
| 25 | R. KnRTHILA |  | 1 | 1 | 1 | 1 |  |  |  |  |  |  |
|  |  |  | A | 1 | 1 |  |  |  | A | 1 |  |  |


| 0 | 8 | 9 | 14 | 15 | 16 | 17 | 23 | 24 | 28 | 29 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| }{} | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 |
|  | 1 | 3 | 3 | 1 | 5 | 4 | 1 | 4 | 3 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 4 | 1 | 1 | 1 | 1 | $A$ | 1 | $A$ | 1 | 1 | 1 |
| 5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 6 | 1 | 1 | $A$ | 1 | 1 | 1 | $A$ | 1 | 1 | 1 |
| 7 | 1 | 1 | $A$ | 1 | 1 | 1 | $A$ | 1 | 1 | 1 |
| 8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 9 | 1 | 1 | $A$ | 1 | 1 | 1 | $A$ | 1 | 1 | 1 |
| 10 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 12 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 13 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 14 | 1 | 1 | 1 | 1 | 1 | $A$ | 1 | 1 | 1 | $A$ |
| 15 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | $A$ | 1 | 1 |
| 16 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 17 | 1 | $A$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 18 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 19 | 1 | 1 | 1 | $A$ | 1 | 1 | 1 | 1 | 1 | 1 |
| 20 | 1 | 1 | 1 | $A$ | 1 | 1 | 1 | 1 | 1 | 1 |
| 21 | 1 | 1 | 1 | 1 | 1 | $A$ | 1 | 1 | $A$ | 1 |
| 22 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 23 | 1 | 1 | 1 | $A$ | 1 | 1 | 1 | 1 | 1 | 1 |
| 24 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 25 | 1 | 1 | 1 | 1 | $A$ | 1 | 1 | 1 | 1 | 1 |
| 1 |  |  |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 |




4

| $\begin{aligned} & \text { o을 } \\ & \overline{\bar{\alpha}} \end{aligned}$ | 22 |  |  | 27 |  |  | 92 |  | 209 | 10 | 11 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 10 |  | 1 | 10 | 10 | 10 | 11 | 11 | $1)$ | 1 | ${ }^{\prime}$ |  |  |
|  | 1 |  | A | 1 | 3 | 1 | 4 | 1 | 2 | 1 | 3 |  |  |
| 1 | 1 |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |  |
| 2 | 1 |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |  |
| 3 |  |  | 1 | 1 | 1 | A | A 1 | 1 | 1 | 1 | 1 |  |  |
| 4 |  | 1 | 1 | 1 |  |  |  | 1 | 1 | 11 | 1 |  |  |
| 5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1. | 11 | 1 | 11 |  |  |
| 6 |  | 1 | 1 | 1 | 1 | 1 | 1, | 1, | 1 | 1 | 1 |  |  |
| 7 |  | 1 | 1 | 1 | A | 1 | 11 | 11 | 11 | 1 | 1 |  |  |
| 8 |  | 1 | 1 | 1 | 1 | 11 | 1 | 11 | 11 | 1 | 1 |  |  |
| 9 |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 11 | 11 | 1 |  |  |
| 10 |  | 1 | 1 |  |  | 1 | 1 | 1 | 1 | 11 | 1 |  |  |
| 11 |  | 1 | 1 |  |  | 1 | 1 | 1 | 1 |  | 1 |  |  |
| 12 |  | 1 | 1 | 1 |  | 1 | 1 | 1 | 1 |  | 1 |  |  |
| 13 |  | 1 | 1 | 1 |  | 1 | 1 | 1 | 1 | 11 | 1 |  |  |
| 14 |  | 1 | 1 | 1 | A | A | 1 | 1 | 1 |  | 1 |  |  |
| 15 |  | 1 |  | A | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |  |
| 16 |  | 1 |  | A |  | 1 |  | 1 | 1 | 1 | 1 |  |  |
| 17 |  | 1 |  |  | 1 | 1 | 1 | 1 | 1 |  | 1 |  |  |
| 18 |  | 1 |  | A |  | 1 | 1 | 1 | 1 | 1 | , |  |  |
| 19 |  | 1 |  | A | 1 | A | 1 | 1 | 1 | 1 | 11 |  |  |
| 20 |  | 1 |  |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |  |
| 21 |  | 1 |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 11 |  |  |
| 22 |  |  | 1 | 1 | 1 | 1 | 1 | 1 |  | 1 | 11 |  |  |
| 23 |  | 1 |  | 1 | A | 1 |  | 1 | 11 | i 1 | 1 |  |  |
| 24 |  |  |  | 1 |  |  | 1 | 11 | 11 | 11 | 11 |  |  |
| 25 |  |  |  | 1 | A | 1 | 1 | 11 | 11 | 1 | 11 |  |  |


| Attendance Particular |  |  |
| :---: | :---: | :---: |
|  | Name | Date |
|  |  | Mont |
|  |  | Peric |
| 1 | R. ARSTH |  |
| 2 | S. AYYAPPAN |  |
| 3 | G.S. Asay Prasan |  |
| 4 | $K$. $\mathrm{KK} \mathrm{S}^{\text {SH }}$ |  |
| 5 | G. AKSHAYAL AKSHI |  |
| 6 | A. Aravind |  |
| 7 | A.B. AVUdAIIAPPAN |  |
| 8 | A. BAKIYA LAKSAM |  |
| 9 | m. BAIAKRISHNAN |  |
| 10 | S. RAVYA |  |
| 11 | T. BHAVATHARANIL |  |
| 12 | P. DEFPIKA |  |
| 13 | S. DFVIPRIVA |  |
| 14 | G. DHARANI |  |
| 15 | J- DIVAKARAN |  |
| 16 | T. EIAYADHARSHINI |  |
| 17 | J. Faglia Afrem |  |
| 18 | M. Conkill |  |
| 19 | A. ComATHI |  |
| 20 | P. Copinfint |  |
| 21 | K. GOVIN DHARATAI |  |
| 22 | K.KAmALI |  |
| 23 | K. KANISHKAR |  |
| 24 | N. KARKUVHBL |  |
| 25 | R. KARTHIKA |  |


| $\frac{\dot{\text { ®}}}{\overline{\text { B}}}$ | i2 | 16 | 16 | 16 | 19 | 24 | 1 | 10 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 11 | 11 | 11 | 11 | 11 | 11 | 2 | 12 |  |
|  | 1 | 4 | 5 ld | 6 | 1 | 45 | 425 | 1-3 |  |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| 4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| 5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| 6 | A | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| 7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| 8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| 9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| 10 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| 11 | 1 | 1 | 1 | 1 | 1 | 1 | , | 1 |  |
| 12 | 1 | 1 | 1 | 1 | 1 | $t$ | 1 | 1 |  |
| 13 | 1 |  | 1 | 1 | 1 | 1 | 1 | 1 |  |
| 14 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| 15 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| 16 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| 17 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| 18 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| 19 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| 20 | 1 | 1 | 1 | 1 | 1 | 1 | , | 1 |  |
| 21 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| 22 | 1 | 1 | 1 | 1 | ) | 1 | 1 | 1 |  |
| 23 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| 24 | 1 | 1 | 1 | 1 | $)$ | 1 | 1 | 1 |  |
| 25 | 1 | 1 | 1 | 1 | 1 | 1 | $\checkmark$ | 1 |  |


| Attendance Particular |  |  |
| :---: | :---: | :---: |
| $\begin{aligned} & \dot{\text { g }} \\ & \stackrel{\rightharpoonup}{\bar{\alpha}} \end{aligned}$ | Name | Date |
|  |  | Mont |
|  |  | Peric |
| 1 | R. ARETH |  |
| 2 | S. AIYAPPAN |  |
| 3 | G. S. Asay Prosan |  |
| 4 | K. AKASH |  |
| 5 | C. AKSHAYALAKSH |  |
| 6 | A. aravino |  |
| 7 | A.B. Avunaiappas |  |
| 8 | A. BAKIYA Laksha |  |
| 9 | I. RAIAKRIGHNAN |  |
| 10 | S. Bayyb |  |
| 11 | T. BHAVATHARANL |  |
| 12 | P. DEFPIKA |  |
| 13 | S. Dfuipriva |  |
| 14 | G. DHARANI |  |
| 15 | J. Divakaran |  |
| 16 | T. Elayamharshin |  |
| 17 | J. Faglia Afrefn |  |
| 18 | M. Cokill |  |
| 19 | A. Gomath |  |
| 20 | P. Gopinfint |  |
| 21 | K. Govin DHarasal |  |
| 22 | K. KAmal |  |
| 23 | K-KANISHKAR |  |
| 24 | N. KaRKVITHLI |  |
| 25 | R. KARTHIKA |  |



Students Academic Assessment Details



| $\frac{\dot{8}}{\bar{Z}}$ | 8 | 9 | 14 | 15 | 16 | 17 | 23 | 24 | 28 | 29 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 |
|  | 1 | B | 3 | 1 | 5 | 4 | 1 | 4 | 3 | 1 |
| 26 | 1 | 1 | 1 | L | A | 1 | 1 | 1 | 1 | 1 |
| 27 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 28 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | A | 1 | 1 |
| 29 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | A | 1 | 1 |
| 30 |  | 1 | 1 | 1 | A | 1 | 1 | 1 | 1 | 1 |
| 31 | 1 | 1 | 1 | 1 | A | 1 | 1 | 1 | 1 | , |
| 32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 33 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | $\wedge$ | 1 | A |
| 34 | A | 1 | 1 | 1 | 1 | A | 1 | 1 | 1 | 1 |
| 35 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | , |
| 36 | 1 |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 37 | 1 |  |  | 1 | 1 | 1 | 1 | 1 |  | 1 |
| 38 | A | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 39 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 40 | 1 | A | 1 | 1 | 1 |  | 1 | 1 | 7 | $L$ |
| 41 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 42 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 1 | 1 | 1 |
| 43 | 1 | 1 | 1 | 1 | 1 |  | 1 | 1 | 1 | 1 |
| 44 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | $\iota$ | 1 |
| 45 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | - | 1 | 1 |
| 46 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 47 | 1 | 1 | A | 1 | 1 | 1 | 1 | 1 | A | 1 |
| 48 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 49 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 50 | 47 | 4 | 45 | 46 | 44 | 46 | 45 | 45 | 47 | 4 |


| Attendance Particulars |  |  |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { ¿ } \\ & \overline{0} \\ & \text { on } \end{aligned}$ | Name | Date |
|  |  | Month |
|  |  | Period |
| 26 | A. MOHAMED YASIR |  |
| 27 | N-MURALIDHPPAN |  |
| 28 | J. NANDHINL |  |
| 29 | P. PAVITHA |  |
| 30 | E.PRIYPOHARSHINI |  |
| 31 | E. RAMAIKRISHNAN |  |
| 32 | T. REIHINA PRIYA |  |
| 33 | R. Sactin |  |
| 34 | T. SATHISH |  |
| 35 | S. SELVBHARBTHI |  |
| 36 | M. STAKTHLVEL SCL |  |
| 37 | G. Sun |  |
| 38 | S. SUERANTANI |  |
| 39 | S. SuGUNA |  |
| 40 | J. SURESH KARTHIK K |  |
| 41 | S.SURUTHI |  |
| 42 |  |  |
| 43 | C. SuFTHA |  |
| 44 | K.THARANIK日 8 S |  |
| 45 | K varin an el |  |
| 46 | S. ITAGATIA RAMANAN |  |
| 47 | K.VIGNESH Co |  |
| 48 | M. VIKKAMmADHITHAN |  |
| 49 | A.VISLuA dra |  |
| 50 | Total No DF Sturants |  |




042

| Attendance Particulars |  |  | $\begin{aligned} & \dot{\text { s }} \\ & \dot{z} \\ & \dot{\sim} \end{aligned}$ |  | 116 | 16 |  |  | 192 |  | 1 | 10 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 11 | 11 | (1) | 11 | 11 | 1 | 1 | 12 | 12 |  |
|  | Name | Date |  | 1 | 4 | 5 | 6 | 1 | 12 |  |  | $1-3$ |  |
|  |  | Month |  | 26 | 1 | , | , | 1 | , | , | 1 | 1 | 1 |  |
|  |  | Period |  |  |  |  |  |  |  |  |  |  |  |
| 26 | A. Mohamel Yasir |  | 27 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| 27 | N. MURALIDHPRAN |  | 28 | 1 | 1 | 1 | 1 |  |  |  | 1 | 1 |  |
| 28 | T. Nandilinl |  | 29 | 1 | A | A | A |  |  |  | 1 | 1 |  |
| 29 | P. Pavitha |  | 30 | 1 |  | 11 | 1 |  |  |  | 1 | 1 |  |
| 30 | E.PBIYPOHARSHINI |  | 31 | 1 | 1 | 1 | 1 |  |  |  | 1 | 1 |  |
| 31 | F. RAmAKKISHINAN |  | 32 | 1 | 1 | 1 | 1 | 1 | 1 |  | 1 | 1 |  |
| 32 | T. RETHINAPRIYA |  | 33 | 1 |  |  | 1 |  |  |  | 1 | 1 |  |
| 33 | R. Stalin |  | 34 | 1 | 1 | 1 | 1 |  |  |  |  | 1 |  |
| 34 | T. SATHISH |  | 35 | 1 | 1 | 1 | 1 | 1 | 1 |  | , | 1 |  |
| 35 | S. SELABHARSTHI |  | 36 | 1 | 1 | 1 | 1 |  |  |  | 1 | 1 |  |
| 36 | m. Stakkiluel |  | 37 | $1$ | 1 | 1 | 1 |  |  |  |  | 1 |  |
| 37 | G. Suva |  | 38 |  | 1 | 1 | 1 |  |  |  |  | 1 |  |
| 38 | S. Sumpantani |  | 38 | 1 | 1 | 1 | 1 | 1 |  | 1 | 1 | 1 |  |
| 39 | S. Suguna |  | 39 | 1 |  | 11 | 1 | 1 | 1 |  | 1 | 1 |  |
| 40 | J. Suresh karihik |  | 40 | 1 | 1 | 1 | 1 | 1 | , |  | 1 | 1 |  |
| 41 | S. Suritel |  | 41 |  | A | A A | A | 1 |  | 11 | 1 | 1 |  |
| 42 | A. Surya |  | 42 | 1 |  | 1 | 1 | 1 |  |  | 1 | 1 |  |
| 43 | S. Sufitha |  | 43 | 1 | 1 | 1 | 1 | 1 | 1 |  | 1 | 1 |  |
| 44 | K. Tharanika |  | 44 | 1 | 1 | 1 | 1 | 1 |  |  |  | 1 |  |
| 45 | K.varun |  | 45 |  | 1 |  |  |  | 11 |  | 1 | 1 |  |
| 46 | S. Javgataramanan |  | 46 | 1 | 1 | 11 | 1 | 1 | , |  | 1 | 1 |  |
| 47 | K. VIGNESH |  | 47 | 1 | 1 | 1 | 1 | 1 | $t$ |  | 1 | 1 |  |
| 48 | M. VIKRAmadhithan |  | 48 | 1 | 1 | 11 | 1 |  |  | 11 | 1 | , |  |
| 49 | A.visum |  | 49 | 1 | 1 | 11 | 1 | 1 | 1 |  | 1 | 1 |  |
| 50 | Total No of Stumats Pa |  | 50 | 48 | 4 | +14 | 47 | 49 |  |  |  | 49 |  |


| Attendance Particulars |  |  |
| :---: | :---: | :---: |
| $\frac{\stackrel{\circ}{2}}{\bar{\circ}}$ | Name | Date |
|  |  | Month |
|  |  | Period |
| 26 | A. MOHAmen Yasir |  |
| 27 | N. Murall |  |
| 28 | J. NANDHINL |  |
| 29 | P. Pantha |  |
| 30 | E. Privioharsaini |  |
| 31 | E. REmekrishnan |  |
| 32 | T. BETHINA PRIHA |  |
| 33 | 2. Spetin |  |
| 34 | F. SPTHISH |  |
| 35 | C. SEvabhingathil |  |
| 36 | m. SHAKTHIVEL |  |
| 37 | G. Suta |  |
| 38 | S SUBRANTANI |  |
| 39 | S. Sugorin |  |
| 40 | I. SURESH KARTHIK |  |
| 41 | S. Suputhi |  |
| 42 | A. Surya |  |
| 43 | S. Surtha |  |
| 44 | K. THARANIVA |  |
| 45 | K yapin |  |
| 46 | S. IENGATHRAMANAN |  |
| 47 | K VIGNESH |  |
| 48 | m. Vikramabuithan |  |
| 49 | A.visha |  |
| 50 | TOTR No of \& |  |

Students Academic Assessment Details


Students Academic Assessment Details


|  |  | RECORD OF CLASS WORK |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Date | TOPICS COVERED |  |  |  |




$\checkmark$
12.11.2021 Chinecidabie probifm arbout Tm 1
16.11 .201 Post Correspondance Probiem
19.11.2021 THE CIASS $P$ AND NP

Hours Planned: 9








## KINGS COLLEGE OF ENGINEERING

## CONTINUOUS ASSESSMENT TEST - I (SEPTEMBER 2021) <br> CS8501 - THEORY OF COMPUTATION <br> : III CSE <br> Date \& Session : 21.09.21 \& AN <br> Time : 2.00 PM-3.30 PM

Class
Maximum Marks : 50

## Answer all the questions

PART - A (5 * $2=10$ )

1. Illustrate the concept of Finite Automaton.
2. What is the principle of mathematical induction?
3. Compare DFA and NFA.
4. What is meant by regular expression?
5. Outline the theorem of pumping lemma for regular languages.

## PART - B ( 2 * 13 = 26)

6. a.(i) Given $\sum=\{a, b\}$, construct a DFA which recognize the language

$$
\begin{equation*}
\mathrm{L}=\left\{b^{m} \mathrm{a} b^{n}: \mathrm{m}, \mathrm{n}>0\right\} \tag{6}
\end{equation*}
$$

(ii)Determine the DFA from a given NFA $\mathrm{M}=\left(\left\{q_{0}, q_{1}\right\},\{\mathrm{a}, \mathrm{b}\}, \delta, q_{0},\left\{q_{1}\right\}\right)$ with the state table diagram for $\delta$ given below.

| $\delta$ | a | b |
| :--- | :--- | :--- |
| $->\mathrm{q} 0$ | $\{\mathrm{q} 0, \mathrm{q} 1\}$ | $\{\mathrm{q} 1\}$ |
| $* \mathrm{q} 1$ | $\varnothing$ | $\{\mathrm{q} 0, \mathrm{q} 1\}$ |

(OR)
b. (i). Prove that if $x>=4$ then $2^{x}>=x^{2}$
(6)
(ii).Consider the following $\varepsilon$-NFA for an identifier. Construct equivalent Deterministic Finite Automata.
$\varepsilon$

7. a. i. Deduct the regular expression from the following NFA.
(6) 0,1

ii. Examine given language $\left.\mathrm{L}=\left\{0^{2 \mathrm{n}}\right\} \mathrm{n}>=1\right\}$ is regular or not. (OR)
ii. Examine that $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{p}} \mid \mathrm{p}\right.$ is a prime $\}$ is regular or not

## PART - C $(1 * 14=14)$

8. a. Construct a DFA equivalent to the NFA $\mathrm{M}=(\{\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}\},\{0,1\}, \mathrm{p},\{\mathrm{q}, \mathrm{s}\})$ where $\delta$ is given by,

| $\delta$ | 0 | 1 |
| :--- | :--- | :--- |
| $\rightarrow p$ | $\{q, s\}$ | $\{q\}$ |
| ${ }^{*} q$ | $\{r\}$ | $\{q, r\}$ |
| $r$ | $\{s\}$ | $\{p\}$ |
| ${ }^{*} s$ | - | $\{p\}$ |

(OR)
b.i. Test the following by the principle of induction $\sum k^{2}=n(n+1)(2 n+1)$

$$
\begin{equation*}
\mathrm{k}=1 \quad 6 \tag{7}
\end{equation*}
$$

ii. Test for every $\mathrm{n}>=1$ by mathematical induction $\sum^{\mathrm{n}} \mathrm{i}^{3}=\{\mathrm{n}(\mathrm{n}+1) / 2\}^{2}$

| PART | Level 1 | Level 2 | Level 3 | Level 4 | Level 5 | Level 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 2,4 | 1,3,5 |  |  |  |  |
| B |  |  | $\begin{gathered} \hline \text { 6.a.i \& } \\ \text { 6.a.ii } \end{gathered}$ |  |  |  |
|  |  |  | $\begin{gathered} \text { 6.b.i \& } \\ \text { 6.b.ii } \end{gathered}$ | $\begin{gathered} \text { 7.a.ii \& } \\ \text { 7.b.ii } \end{gathered}$ |  |  |
|  |  |  |  |  | $\begin{gathered} \hline \text { 7.a.i \& } \\ \text { 7.b.i } \end{gathered}$ |  |
| C |  |  |  |  |  | 8.a |
|  |  |  |  |  |  | $\begin{gathered} \hline \text { 8.b.i \& } \\ \text { 8.b.ii } \end{gathered}$ |
| Total | 4 | 6 | 13 | 7 | 6 | 14 |

ANNEXURE - I

## KINGS COLLEGE OF ENGINEERING

 CONTINUOUS ASSESSMENT TEST - I (SEP '2021)| College Code | 8 | 2 | 1 |  | 1 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| College Name | Kings college of Engincering |  |  |  |  |  |  |  |  |  |  |
| Register Number | 8 | 11 | 1 | 1 | 9 | 10 |  | 4 | 0 | $\bigcirc$ | 8 |
| Name of the Candidate | A.B.Avudaiappan |  |  |  |  |  |  |  |  |  |  |
| Degree | $B \cdot E$ |  |  |  |  |  |  |  |  |  |  |
| Branch | CSE |  |  |  |  | Semester |  | V |  |  |  |
| Subject Code | C | $s$ | 8 |  | 5 | 0 | 1 |  |  |  |  |
| Subject Name | Theory of computation |  |  |  |  |  | FN |  |  |  |  |
| Date | 21 | 09 | 21 |  | Session |  |  |  |  | AN $\sim$ |  |
| No. of Pages used | 5 |  | In words |  | Five |  |  |  |  |  |  |
| All particulars given above by me are verified and found to be correct |  |  |  |  |  |  |  |  |  |  |  |
| Signature of the Student with date |  | An\% $21 / 9121$ |  |  |  |  |  |  |  |  |  |

For Office Use Only


Class / Sem : 111 /V Sub Code/Subject : CS8501 / Theory of Computation
Subject Incharge : Ms.S.Puvaneswari

|  |  |  |  |
| :---: | :---: | :---: | :---: |
| R.No | Reg No. | Name of the Student | CAT-I <br> (out of 50) |
| 1 | 821119104001 | Aarthi. R | 36 |
| 2 | 821119104002 | Aiyappan. S | 26 |
| 3 | 821119104003 | Ajay Prasanna. G S | 26 |
| 4 | 821119104005 | Akash.K | 25 |
| 5 | 821119104006 | Akshayalakshmi. G | 30 |
| 6 | 821119104007 | Aravind. A | 27 |
| 7 | 821119104008 | Avudaiappan.AB | 34 |
| 8 | 821119104009 | Bakiya Lakshmi.A | 25 |
| 9 | 821119104010 | Balakrishnan. M | 30 |
| 10 | 821119104011 | Bavya. S | 45 |
| 11 | 821119104012 | Bhavatharani.T | 39 |
| 12 | 821119104013 | Deepika. P | 39 |
| 13 | 821119104014 | Devipriya.S | 40 |
| 14 | 821119104015 | Dharani. G | 34 |
| 15 | 821119104016 | Divakaran. J | 28 |
| 16 | 821119104017 | Elayadharshini.T | 28 |
| 17 | 821119104018 | Fasila Afreen .J | 40 |
| 18 | 821119104019 | Gokul.M | 27 |
| 19 | 821119104020 | Gomathi.A | 25 |
| 20 | 821119104021 | Gopinath. P | 28 |
| 21 | 821119104022 | Govindharajan. K | 28 |
| 22 | 821119104023 | Kamali. K | 36 |
| 23 | 821119104024 | Kanishkar.K | 27 |
| 24 | 821119104025 | Karkuzhali. N | 25 |
| 25 | 821119104026 | Karthika. R | 33 |
| 26 | 821119104027 | Mohamed Yasir. A | 26 |
| 27 | 821119104028 | Muralidharan. N | 28 |
| 28 | 821119104029 | Nandhini. J | 37 |
| 29 | 821119104031 | Pavitha.P | 42 |
| 30 | 821119104032 | Priyadharshini.E | 33 |
| 31 | 821119104033 | Ramakrishnan.E | 28 |
| 32 | 821119104034 | Rethinapriya. T | 30 |
| 33 | 821119104035 | Sachin.R | 28 |
| 34 | 821119104037 | Sathish.T | 25 |
| 35 | 821119104038 | Selvabharathi. S | 25 |
| 36 | 821119104039 | Shakthivel.M | 28 |


| R.No | Reg No. | Name of the Student | CAT-I <br> (out of <br> 50) |
| :---: | :--- | :--- | :---: |
| 37 | 821119104040 | Siva.G | 26 |
| 38 | 821119104041 | Sivaranjant.S | 33 |
| 39 | 821119104043 | Suguna. S | 41 |
| 40 | 821119104044 | Suresh Karthik.J | 32 |
| 41 | 821119104045 | Suruthi. S | 39 |
| 42 | 821119104046 | Surya. $\boldsymbol{A}$ | 37 |
| 43 | 821119104047 | Swetha. S | 39 |
| 44 | 821119104048 | Tharanika. K | 34 |
| 45 | 821119104049 | Varun. K | 28 |
| 46 | 821119104050 | Vengatramanan. S | 30 |
| 47 | 821119104051 | Vignesh. K | 28 |
| 48 | 821119104052 | Vikiramadhithan.M | 31 |
| 49 | 821119104053 | Viswa .A | 29 |

STAFF INCHARGE

# KINGS COLLEGE OF ENGINEERING <br> CONTINUOUS ASSESSMENT TEST - II (OCTOBER 2021) <br> CS8501 - THEORY OF COMPUTATION <br> : III CSE <br> Date \& Session : 23.10.21 \& AN <br> Time : 2.15 PM-3.45 PM 

Class
Maximum Marks : 50

## Answer all the questions

PART - A (5 * $2=10)$

1. What are the closure properties of regular languages?
2. Let $\sum=\{0,1\}$ and $\sum^{1}=\{0,1,2\}$ with $h(0)=01$ and $h(1)=112$. Find $h(010)$ and homomorphic image of $\mathrm{L}=\{00,010\}$.
3. Write a Context Free Grammar for the language consisting of equal number of a's and b's
4. Give a formal definition of Push Down Automata?
5. Derive a string 'aababa' for the following Context Free Grammar (CFG) $\mathrm{S} \rightarrow \mathrm{aSX} \mid \mathrm{b}$; $X \rightarrow X b \mid a$

$$
\begin{equation*}
\text { PART - B }(2 * 13=26) \tag{6}
\end{equation*}
$$

6. a. (i). Construct DFA for the regular expression $0(0+1) * 1$
(ii). Minimize the number of states of DFA for the above regular expression
7. b. (i) Construct DFA for the regular expression $(00+11) * 01$
(ii). Minimize the number of states of DFA for the above regular expression
8. a. i) Build a PDA to accept $\left\{0^{n} 1^{n} \mid n>1\right\}$. Draw the transition diagram for the PDA. Show by instantaneous description that the PDA accepts the string ' 0011 '
ii) Determine the pushdown automata that accepts $\left\{\omega c \omega^{\mathrm{R}} \mid \omega\right.$ is in $\left.(0+1)^{*}\right\}$.
(Or)
b. (i) Prove that if $L$ is $N(M 1)($ Language accepted by empty stack) for some PDA M1,then L is N(M2)(Language accepted by final state) for some PDA and model it with suitable diagram.
(ii) Prove that if L is $N(M 1)$ (Language accepted by final state) for some PDA M1,then $L$ is $\mathrm{N}(\mathrm{M} 2)$ (Language accepted by empty stack) for some PDA and model it with suitable diagram.

## PART - B (1 * $14=14)$

9. a. Assume $\mathrm{M}=(\{\mathrm{q} 0, \mathrm{q} 1\},\{0,1\},\{\mathrm{x}, \mathrm{z} 0\}, \delta, \mathrm{q} 0, \mathrm{z} 0)$ where $\delta$ is given by $\delta(\mathrm{q} 0,0, \mathrm{z} 0)=$ $\{(\mathrm{q} 0, \mathrm{xz} 0)\}, \delta(\mathrm{q} 1,1, \mathrm{x})=\{(\mathrm{q} 1, \varepsilon)\}, \delta(\mathrm{q} 0,0, \mathrm{x})=\{(\mathrm{q} 0, \mathrm{xx})\} \delta(\mathrm{q} 1, \varepsilon, \mathrm{x})=\{(\mathrm{q} 1, \varepsilon)\} \delta$ $(q 1, \varepsilon, z 0)=\{(q 1, \varepsilon)\}$ Construct a CFG for the PDA.
(Or)
b. (i) Convert PDA to CFG. PDA is given by $\mathrm{P}=(\{\mathrm{p}, \mathrm{q}\},\{0,1\},\{\mathrm{X}, \mathrm{Z}\}, \delta, q, Z), \delta$ is defined by

$$
\begin{align*}
& \delta(p, 1, Z)=(p, X Z)\}, \quad \delta(p, \quad \varepsilon, z)=\{(P, \quad \varepsilon)\}, \quad \delta(p, \quad 1, x)=\{(p, X X)\}, \quad \delta(q, 1, X)=\left\{\left(\begin{array}{ll}
q, & \varepsilon
\end{array}\right)\right\}, \\
& \delta(p, 0, X)=\{(q, X)\}, \delta(q, 0, Z)=\{(p, Z)\} \tag{7}
\end{align*}
$$

(ii).Examine DPDA. Give example for Non-deterministic and DPDA

| PART | Level 1 | Level 2 | Level 3 | Level 4 | Level 5 | Level 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| A | $1,3,4$ | 2,5 |  |  |  |  |
| B |  |  |  |  |  | 6.a.i \& ii |
|  |  |  |  |  | 6.b.i \& ii |  |
|  |  |  |  | $7 . a . i(6)$ |  | 7.a.ii (7) |
|  |  |  | 7. b.i(6) |  | 7.b.ii(7) |  |
|  |  |  |  |  | $8 . a(14)$ <br> $(14)$ |  |
| Total | 6 | 4 | 6 | 14 | 7 |  |



## CONTINUOUS ASSESSMENT TEST- $1 / \mathrm{hi} / \mathrm{IMODEL}$ EKARMWATION




| Semester | $\underline{y}$ |
| :--- | :---: |
| Date \& session | $23 \cdot 10.21$ | | All the particulars given sre verified |  |  |
| :--- | :--- | :--- |
| No. of pages used | 12 | Signature of the Invigilator with <br> date |
| Name of the invigilator | $M \cdot B A(A)$ |  |

## Instructions to the candidates

1. You are prohibited from writing your NAME in any part of the answer book.
2. You are prohibited from writing or leaving any distinguishing marks so as to identify your answer book.
3. Use both side of the paper for answering questions (Except front page).
4. Check the regulation, Degree, Branch, Semester, Subject code and Subject Title of the Question Paper before answering the questions.
5. Possession of any incriminating material and Malpractice of any nature shall be punishable as rules.
6. No additional sheets will be provided.

Signature of the Student with Date after Evaluation

SPACE FOR MARKS

Department of Computer Science \& Engineering Academic Year 2021-22 / ODD Semester
Class / Sem : III / V Sub Code/Subject :CS8501/Theory of Computation Subject Incharge :Ms.S.Puvaneswari

Date of Exam: 23.10.21

| Continuous Assessment Test - II |  |  |  |
| :---: | :---: | :---: | :---: |
| R.No | Reg No. | Name of the Student | CAT - II <br> (out of 50) |
| 1 | 821119104001 | Aarthi. R | 5 |
| 2 | 821119104002 | Miyappan. S | 11 |
| 3 | 821119104003 | Ajay Prasanna. G S | 6 |
| 4 | 821119104005 | Akash .K | $A B$ |
| 5 | 821119104006 | Akshayalakshmi. G | $A B$ |
| 6 | 821119104007 | Aravind. $\Lambda$ | 5 |
| 7 | 821119104008 | Avudaiappan.AB | 14 |
| 8 | 821119104009 | Bakiya Lakshmi.A | 25 |
| 9 | 821119104010 | Balakrishnan. M | 1 |
| 10 | 821119104011 | Bavya. S | 6 |
| 11 | 821119104012 | Bhavatharani.T | 25 |
| 12 | 821119104013 | Deepika. P | 36 |
| 13 | 821119104014 | Devipriya. S | 27 |
| 14 | 821119104015 | Dharani. G | 3 |
| 15 | 821119104016 | Divakaran. J | $A B$ |
| 16 | 821119104017 | Elayadharshini.T | $A B$ |
| 17 | 821119104018 | Fasila Afreen.J | $A B$ |
| 18 | 821119104019 | Gokul.M | $A B$ |
| 19 | 821119104020 | Gomathi .A | $A B$ |
| 20 | 821119104021 | Gopinath. P | $A B$ |
| 21 | 821119104022 | Govindharajan. K | $A B$ |
| 22 | 821119104023 | Kamali. K | 17 |
| 23 | 821119104024 | Kanishkar.K | 6 |
| 24 | 821119104025 | Karkuzhali. N | 11 |
| 25 | 821119104026 | Karthika. R | AB |
| 26 | 821119104027 | Mohamed Yasir. A | 17 |
| 27 | 821119104028 | Muralidharan. N | 15 |
| 28 | 821119104029 | Nandhini. J | 15 |
| 29 | 821119104031 | Pavitha.P | 14 |
| 30 | 821119104032 | Priyadharshini.E | 9 |
| 31 | 821119104033 | Ramakrishnan.E | 19 |
| 32 | 821119104034 | Rethinapriya. T | $A B$ |
| 33 | 821119104035 | Sachin.R | - 5 |
| 34 | 821119104037 | Sathish.T | $A B$ |
| 35 | 821119104038 | Selvabharathi. S | $A B$ |
| 36 | 821119104039 | Shakthivel.M | 26 |


| R.No | Reg No. | Name of the Student | CAT-II <br> (out of <br> 50 ) |
| :---: | :--- | :--- | :---: |
| 37 | 821119104040 | Siva.G | 6 |
| 38 | 821119104041 | Sivaranjani.S | 11 |
| 39 | 821119104043 | Suguna. S | 25 |
| 40 | 821119104044 | Suresh Karthik.J | AB |
| 41 | 821119104045 | Suruthi. S | AB |
| 42 | 821119104046 | Surya. $A$ | 26 |
| 43 | 821119104047 | Swetha. S | 35 |
| 44 | 821119104048 | Tharanika. K | AB |
| 45 | 821119104049 | Varun. K | AB |
| 46 | 821119104050 | Vengatramanan. $S$ | 5 |
| 47 | 821119104051 | Vignesh. K | 3 |
| 48 | 821119104052 | Vikiramadhithan .M | AB |
| 49 | 821119104053 | Viswa.A | AB |

# KINGS COLLEGE OF ENGINEERING 

MODEL EXAM (NOVEMBER 2021)
CS8501 - THEORY OF COMPUTATION

| Class/Sem | : III CSE / 05 | Date \& Session: 25.11.21 \& FN |
| :--- | :--- | ---: |
| Maximum | $: 100$ | Time: 9.45am to 12.45 pm |

ANSWER ALL THE QUESTIONS
PART - A (10 * 2 = $\mathbf{2 0}$ Marks )

1. Define Finite Automata.
2. Outline the concepts of principle of mathematical induction.
3. What is meant by regular expression?
4. Summarize the definition of pumping lemma for regular set.
5. Build CFG for a signed integer constant in C
6. Compare PDA acceptance by empty stack method with acceptance by the final state method
7. Illustrate the configuration of Turing Machine
8. Define simplification of CFG.
9. Identify the properties of recursive and recursive enumerable language.
10. Summarize the concepts of NP-hard and NP-completeness problem.

$$
\text { PART - B }[5 * 13=65 \text { Marks })
$$

11. a.(i). Prove the following by the principle of induction $\sum_{k=1} k^{2}=\frac{n(n+1)(2 n+1)}{6}$.
(ii). P.T A language is accepted by some DFA iff $L$ is accepted by some NFA.
(OR)
b.(i). Assess a non-deterministic finite automaton accepting the set of strings over $\{\mathrm{a}, \mathrm{b}\}$ ending in aba. Use it to construct a DFA accepting the some set of strings.
(ii). Deduct into DFA for the following $\varepsilon$-NFA

|  | $\varepsilon$ | a | b | c |
| :--- | :--- | :--- | :--- | :--- |
| $\rightarrow \mathrm{p}$ | $\{\mathrm{q}, \mathrm{r}\}$ | $\varnothing$ | $\{\mathrm{q}\}$ | $\{\mathrm{r}\}$ |
| q | $\varnothing$ | $\{\mathrm{p}\}$ | $\{\mathrm{r}\}$ | $\{\mathrm{p}, \mathrm{q}\}$ |
| ${ }^{\mathrm{r}} \mathrm{r}$ | $\varnothing$ | $\varnothing$ | $\emptyset$ | $\varnothing$ |

12. a.(i). Describe Arden's Theorem with an example.
(ii). S.T the set $\mathrm{L}=\left\{0^{\mathrm{i} 2} \mid \mathrm{i} \geq 1\right\}$ is not regular
b.(i). S.T the set $\mathrm{L}=\left\{0^{\mathrm{n}} \mid \mathrm{n}\right.$ is a perfect square $\}$ is not regular
(ii).Illustrate the steps to Construct an NFA from the regular expression ((a|b)*a
13. a.(i). Construct a parse tree and compute left most derivation, rightmost derivation for a given input, (a+b) and a++
$\mathrm{I} \rightarrow \mathrm{a}|\mathrm{b}| \mathrm{Ia}|\mathrm{Ib}| \mathrm{IO} \mid \mathrm{I} 1$
$\mathrm{E} \rightarrow \mathrm{I}|\mathrm{E}+\mathrm{E}| \mathrm{E}^{*} \mathrm{E} \mid(\mathrm{E})$
(ii).Construct a PDA that accept the given CFG: $S \rightarrow$ xaax, $X \rightarrow a x|b x| \varepsilon$
(OR)
b. (i). Solve that if L is N(M1)(Language accepted by empty stack) for some PDA M1, then L is N(M2) (Language accepted by final state) for some PDA.
(ii). Construct PDA for the language $\mathrm{L}=\left\{\mathrm{ww}^{\mathrm{R}} \mid \mathrm{w}\right.$ in $\left.(\mathrm{a}+\mathrm{b})^{*}\right\}$.
14. a. List the steps to convert the following grammar into an equivalent one with no unit productions and no useless symbols (Simplification of CFG) and convert into CNF form S-> ABA, A->aAA|aBc|bB,B->A|bB|Cb,C->CC|cC
(OR)
b. Show and explain in detail about programming techniques for TM
15. a.Examine that $\mathrm{L}_{\mathrm{ne}}$ is not recursive and also prove that $\mathrm{L}_{\mathrm{ne}}$ is recursively enumerable.
(OR)
b. Analyze the concepts about RICE theorem and Simplify $L_{u}$ is RE but not recursive

## PART-C(1*15 = 15 Marks)

16. a. Construct PDA from CFG. PDA is given by $P=\{\{p, q\},\{0,1\},\{X, Z\}, \delta, q, Z), \delta$ is defined by $\delta(p, 1, Z)=\{(p, X Z)\}, \delta(p, \varepsilon, z)=\{(P, \varepsilon)\}, \delta(p, 1, x)=\{(p, X X)\}, \delta(q, 1, X)=\{(q, \varepsilon)\}, \delta(p, 0, X)=\{(q, X)\}$, $\delta(q, 0, Z)=\{(p, Z)\}$
(OR)
b. Write down the steps to provide solution to the PCP problem

The TM $\mathrm{M}=\{\{\mathrm{q} 1, \mathrm{q} 2, \mathrm{q} 3\},\{0,1\},\{0,1, \mathrm{~B}\}, \delta, \mathrm{q} 1, \mathrm{~B},\{\mathrm{q} 3\}\}$ where $\delta$ is given by $\delta(\mathrm{q} 1,0)=\{(\mathrm{q} 2,1, \mathrm{R})\}$, $\delta(q 1,1)=\{(q 2,0, L)\}, \delta(q 1, B)=\{(q 2,1, L)\}, \delta(q 2,0)=\{(q 3,0, L)\}, \delta(q 2,1)=\{(q 1,0, R)\}$, $\delta(\mathrm{q} 1, \mathrm{~B})=\{(\mathrm{q} 2,0, \mathrm{R})\}$ and input string $\mathrm{w}=01$. Build the solution.

| PART | Level 1 | Level 2 | Level 3 | Level 4 | Level 5 | Level 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 1,3,8,10 | 2,4,6,7 | 5,9 |  |  |  |
| B | $14 . a$ | 12.a.i. \& ii | 13.a.i \& ii | 15.a.i \& ii | 11.a.i \& ii |  |
|  | 14.b | 12.b.i \& ii | 13.b.i \& ii | 15.b.i \&ii | 11.b.i \& ii |  |
| C |  |  |  |  |  | $16 . a$ |
|  |  |  |  |  |  | 16.b |
| Total | 21 | 21 | 17 | 13 | 13 | 15 |



## CONTINUOUS ASSESSMENT TEST-I/I/ / MODEL EXAMINATION



|  <br> Name | 8 | 2 | 1 | 1 | KINGIS COLLEGIE OF ENGINEERING |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Degree/Branch | BE/CSE |  |  |  |  |
| Subject Code | CS 8501 | Subject Title | THEORY OF COMPUTATION |  |  |


| Semester | $\Sigma$ |
| :--- | :--- |
| Date \& session | 25.11 .21 EPA |
| No. of pages used | 20 |


| All the particulars given are verified |  |  |
| :--- | :--- | :---: |
| Signature of the Invigiator with <br> date | S. (2ul $25 / 11 / 2021$ |  |
| Name of the Invigliator | Dr. S. Rev at thr |  |

## Instructions to the candidates

1. You are prohibited from writing your NAME in any part of the answer book.
2. You are prohibited from writing or leaving any distinguishing marks so as to identify your answer book.
3. Use both side of the paper for answering questions (Except front page).
4. Sheck the regulation, Degree, Branch, Semester, Subject code and Subject Title of the Question Paper before answering the questions.
5. Possession of any incriminating material and Malpractice of any nature shall be punishable as riles.
6. No additional sheets will be provided.

Signature of the Student with [)ate after Evaluation

| SPACE FOR MARKS |
| :---: | :---: |
| S. Pur |
| Signature of tie Examiner with Date |
| S. Puaneswan' |
| Name of the examiner |

$\ll$
事
为


Department of Computer Science \& Engineering Academic Year 2021-22 / ODD Semester
Class / Sem : Ill /V Sub Code/Subject : CS8501/Theory of Computation Subject Incharge : Ms.S.Puvaneswari Date of Exam: 25.11.21

| R.No | Reg No. | Name of the Student | Model (out of 100) |
| :---: | :---: | :---: | :---: |
| 1 | 821119104001 | Aarthi. R | 11 |
| 2 | 821119104002 | Aiyappan. $S$ | 17 |
| 3 | 821119104003 | Ajay Prasanna. G S | 15 |
| 4 | 821119104005 | Akash.K | 14 |
| 5 | 821119104006 | Akshayalakshmi. G | 36 |
| 6 | 821119104007 | Aravind. A | 19 |
| 7 | 821119104008 | Avudaiappan.A B | 51 |
| 8 | 821119104009 | Bakiya Lakshmi.A | 42 |
| 9 | 821119104010 | Balakrishnan. M | 40 |
| 10 | 821119104011 | Bavya. S | 33 |
| 11 | 821119104012 | Bhavatharani T T | 80 |
| 12 | 821119104013 | Deepika. P | 72 |
| 13 | 821119104014 | Devipriya. S | 72 |
| 14 | 821119104015 | Dharani.G | 65 |
| 15 | 821119104016 | Divakaran. J | 14 |
| 16 | 821119104017 | Elayadharshini.T | 37 |
| 17 | 821119104018 | Fasila Afreen .J | 75 |
| 18 | 821119104019 | Gokul.M | 19 |
| 19 | 821119104020 | Gomathi A | 16 |
| 20 | 821119104021 | Gopinath. P | 16 |
| 21 | 821119104022 | Govindharajan. K | 50 |
| 22 | 821119104023 | Kamali. K | 61 |
| 23 | 821119104024 | Kanishkar.K | 26 |
| 24 | 821119104025 | Karkuzhali. N | 23 |
| 25 | 821119104026 | Karthika. R | 50 |
| 26 | 821119104027 | Mohamed Yasir. A | 24 |
| 27 | 821119104028 | Muralidharan. N | 46 |
| 28 | 821119104029 | Nandhini. J | 62 |
| 29 | 821119104031 | Pavitha.P | 38 |
| 30 | 821119104032 | Priyadharshini.E | 36 |
| 31 | 821119104033 | Ramakrishnan.E | 43 |
| 32 | 821119104034 | Rethinapriya. T | 35 |
| 33 | 821119104035 | Sachin .R | 21 |
| 34 | 821119104037 | Sathish.T | 57 |
| 35 | 821119104038 | Selvabharathi. S | 10 |
| 36 | 821119104039 | Shakthivel.M | 38 |


| R.No | Reg No. | Name of the Student | Model (out of 100) |
| :---: | :---: | :---: | :---: |
| 37 | 821119104040 | Siva.G | 26 |
| 38 | 821119104041 | Sivaranjani. S | 50 |
| 39 | 821119104043 | Suguna. S | 60 |
| 40 | 821119104044 | Suresh Karthik.J | 39 |
| 41 | 821119104045 | Suruthi. S | 63 |
| 42 | 821119104046 | Surya. A | 64 |
| 43 | 821119104047 | Swetha. S | 80 |
| 44 | 821119104048 | Tharanika. K | 35 |
| 45 | 821119104049 | Varun. K | 30 |
| 46 | 821119104050 | Vengatramanan. $S$ | 35 |
| 47 | 821119104051 | Vignesh. K | 51 |
| 48 | 821119104052 | Vikiramadhithan.M | 57 |
| 49 | 821119104053 | Viswa.A | $A B$ |

# KINGS COLLEGE OF ENGINEERING 

## MODEL EXAM - II (DECEMBER 2021)

## CS8501 - THEORY OF COMPUTATION

| Class/Sem | $:$ III CSE / 05 | Date \& Session: 27.12.21 \& FN |
| :--- | :--- | :--- |
| Maximum | $: 100$ | Time: 9.30 am to 12.30 pm |

## ANSWER ALL THE QUESTIONS

$$
\text { PART - A }(10 * 2=20 \text { Marks })
$$

1. State any four ways of theorem proving.
2. What is meant by proof by contradiction?
3. Identify the applications of Regular Expression
4. What are the closure properties of regular languages?
5. What is meant by Context Free Grammar?
6. List down the different types of languages accepted by DPDA.
7. Outline the steps for pumping lemma for CFL.
8. Infer the Instantaneous description of TM.
9. What is the measuring complexity for NFA?
10. Define PCP or Post Correspondence Problem.

$$
\text { PART-B }(5 * 13=65)
$$

11. a.(i). Prove that if $x>=4$ then $2^{x}>=x^{2}$
(ii).Prove every tree has ' e ' edges and ' $\mathrm{e}+1$ ' nodes.
(OR)
b.(i).Deduct $\varepsilon$-NFA to DFA

(ii). Construct a non-deterministic finite automaton accepting the set of strings over $\{\mathrm{a}, \mathrm{b}\}$ ending in aba .
12. a. Show that the regular language are closed under:
a. Union
b. Intersection
c. Kleene Closure
d. Complement
e. Difference

## (OR)

$$
\begin{equation*}
\text { b. Build the finite automaton for the regular expression }(0+1)^{*} 0(0+1)^{*} \tag{13}
\end{equation*}
$$

13. a.(i).Outline the steps to construct a pushdown automata to accept the language $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} / \mathrm{n} \geq 1\right\}$ by empty stack
(ii).Explain that there is a parse tree with root A and with yield w , then there is a leftmost derivation $\mathrm{A}=>\mathrm{w}$ in grammar G
(OR)
b.(i). if G is the grammar $\mathrm{S} \rightarrow \mathrm{SbS} \mid$ a show that G is ambiguous
(6)
(ii). Illustrate the steps to construct a PDA accepting $\left\{a^{n} b^{m} a^{n} \mid n, m>=1\right\}$
14. a.Elaborate the steps to convert into Chomsky Normal Form (CFG) equivalent to the grammar G with the productions P given.
$\mathrm{S} \rightarrow a A b B, \mathrm{~A} \rightarrow a A|\in, \mathrm{~B} \rightarrow b B| \in$
(OR)
b.Design a Turing machine to accept language $\mathrm{L}=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} / \mathrm{n}>=1\right\}$ and simulate its action on the input 0011
15. a.(i). Solve that if a language is recursive iff it \& its complement are both RE
(ii).if $L$ is a recursive language so is complement of $L$
(OR)
b.(i).S.T $\mathrm{L}_{\mathrm{u}}$ is recursively enumerable
(ii).S.T modified PCP reduces to PCP
(6)

PART - C ( 1 * 15 = 15)
16. a. Examine in detail about Class $P$ and NP with an example
(Or)
b.Simplify the following grammar into GNF
$S \rightarrow A B, A \rightarrow B S|b, B \rightarrow S A| a$

| PART | Level 1 | Level 2 | Level 3 | Level 4 | Level 5 | Level 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 1,2,4,5,6,9,10 | 3,7,8 |  |  |  |  |
| B | 11.a.i \& ii | 12.a | 13.a.i \& ii |  |  |  |
|  | 11.b.i.\& ii | 12.b | 13.b.i \& ii |  |  |  |
|  |  | 15.a.i \& ii | 14.9 |  |  |  |
|  |  | 15.b.i \& ii | 14.b |  |  |  |
| C |  |  |  | $16 . a$ |  |  |
|  |  |  |  | 16.b |  |  |
| Total | 27 | 32 | 26 | 15 |  |  |



CONTINUOUS ASSESSMENT TEST-1/Ri 1 MODEL EXARHATHON -2

REGISTER NUMBER

| 8 | 2 | 1 | 1 | 1 | 9 | 1 | 0 | 4 | 0 | 1 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| RoLl no. | 19 CS 13 |
| :--- | :--- |
| YEAR I BRANCH / SECTION | III - SF |



| Semester | 05 |
| :--- | :---: |
| Date \& session | $27.12 .21 / F$ |
| No. of pages used | $2 H$ |



Instructions to the candidates

1. You are prohibited from writing your NAME in any part of the answer book.
2. You are prohibited from writing or leaving any distinguishing marks so as to identify your answer book.
3. Use both side of the paper for answering questions (Except front page).
4. Check the regulation, Degree, Branch, Semester, Subject code and Subject Title of the Question Paper before answering the questions.
5. Possession of any incriminating material and Malpractice of any nature shall be punishable as rules.
6. No additional sheets will be provided.

Signature of the Student with Date after Evaluation
SPACE FOR MARKS

Department of Computer Science \& Engineering
Academic Year 2021-22 / ODD Semester
Class / Sem : III / V Sub Code/Subject : CS8501 / Theory of Computation Subject Incharge : Ms.S.Puvaneswari

Model Exam - II

| R.No | Reg No. | Name of the Student | $\begin{gathered} \text { Model } \\ \text { (out of 100) } \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| 1 | 821119104001 | Aarthi. R | 15 |
| 2 | 821119104002 | Aiyappan. S | 7 |
| 3 | 821119104003 | Ajay Prasanna. G S | 8 |
| 4 | 821119104005 | Akash.K | 6 |
| 5 | 821119104006 | Akshayalakshmi. G | 13 |
| 6 | 821119104007 | Aravind. A | AB |
| 7 | 821119104008 | Avudaiappan .A B | AB |
| 8 | 821119104009 | Bakiya Lakshmi .A | 19 |
| 9 | 821119104010 | Balakrishnan. M | 23 |
| 10 | 821119104011 | Bavya. S | 17 |
| 11 | 821119104012 | Bhavatharani.T | 52 |
| 12 | 821119104013 | Deepika. P | 50 |
| 13 | 821119104014 | Devipriya. S | 67 |
| 14 | 821119104015 | Dharani. G | 32 |
| 15 | 821119104016 | Divakaran. J | 7 |
| 16 | 821119104017 | Elayadharshini.T | 13 |
| 17 | 821119104018 | Fasila Afreen .J | 70 |
| 18 | 821119104019 | Gokul.M | 8 |
| 19 | 821119104020 | Gomathi.A | 6 |
| 20 | 821119104021 | Gopinath. P | 3 |
| 21 | 821119104022 | Govindharajan. K | 9 |
| 22 | 821119104023 | Kamali. K | 31 |
| 23 | 821119104024 | Kanishkar .K | 7 |
| 24 | 821119104025 | Karkuzhali. N | 26 |
| 25 | 821119104026 | Karthika. R | 3 |
| 26 | 821119104027 | Mohamed Yasir. A | 15 |
| 27 | 821119104028 | Muralidharan. N | 20 |
| 28 | 821119104029 | Nandhini. J | 21 |
| 29 | 821119104031 | Pavitha.P | 24 |
| 30 | 821119104032 | Priyadharshini.E | 20 |
| 31 | 821119104033 | Ramakrishnan .E | 17 |
| 32 | 821119104034 | Rethinapriya. T | 11 |
| 33 | 821119104035 | Sachin.R | 1 |
| 34 | 821119104037 | Sathish .T | AB |
| 35 | 821119104038 | Selvabharathi. S | 8 |
| 36 | 821119104039 | Shakthivel .M | 24 |


| R.No | Reg No. | Name of the Student | Model <br> (out of <br> $\mathbf{1 0 0})$ |
| :---: | :--- | :--- | :---: |
| 37 | 821119104040 | Siva.G | 11 |
| 38 | 821119104041 | Sivaranjani.S | 25 |
| 39 | 821119104043 | Suguna. S | 57 |
| 40 | 821119104044 | Suresh Karthik.J | 3 |
| 41 | 821119104045 | Suruthi. S | 36 |
| 42 | 821119104046 | Surya. A | 33 |
| 43 | 821119104047 | Swetha. S | 50 |
| 44 | 821119104048 | Tharanika. K | 5 |
| 45 | 821119104049 | Varun. K | 13 |
| 46 | 821119104050 | Vengatramanan. S | 8 |
| 47 | 821119104051 | Vignesh. K | 6 |
| 48 | 821119104052 | Vikiramadhithan.M | 50 |
| 49 | 821119104053 | Viswa.A | 2 |

$\mathrm{S}_{\text {HOD }} \sqrt{30 / \mathrm{V}}$

## Course File

## Format A

## ASSIGNMENT

## TITLE

## OBJECTIVE

: Problems with Finite Automata and Regular Expression, Ambiguous Grammar
:

- Understand the concept of Finite Automata
- Know the difference between NFA and DFA
- Convert NFA into DFA
- Convert NFA into regular expression and vice versa.
- Determine given grammar is ambiguous or not.

| METHODOLOGY | : Descriptive Answers |
| :--- | :--- |
| EVALUATION | $: 50$ Marks awarded for the conversion process |

DATE OF COMPLETION : 25.9.21

NANEE: T.BGANVATNABMANI
ROLLNO:19CS11
REGNO : 822119104012
SUBCODE: C58501
SUBTECT:TIEORY OF CONPUTATION E ASSIGNTIENTT-I

PART-A

1) Define Finite Automaton:
*Finite automata is a mathematical models which alcuays accepts regular Languages.

* A Finite automata is a collection of 5 tuples ( $\left.Q, \Sigma, \delta, q_{0}, F\right)$. CQ14):
$\Rightarrow Q=$ finite set of states which is non empty
$\Rightarrow \Sigma=$ input alphabet.
$\Rightarrow q_{0}=$ initial state $q_{0}=Q$
$\Rightarrow F=$ set of final states
$\Rightarrow 8=$ transition 1 mapping function.
Enumerate the difference between NFA and DFA.

| S.No | DFA | MFA |
| :--- | :--- | :--- |
| 1. | Every input string <br> leads to the unique <br> state of FA. | For the same input <br> there can be more <br> than one nest state. |
| 2.conversion of regular <br> expression to DFA is <br> complex | Here it is easier. |  |
| 3.DFA requires more <br> memory for storing <br> state information. | NFA requires more <br> computations to match <br> re. with input. |  |
| 4. | In DFA there is no <br> E-transitions. | In NFA E-transifions <br> are possible. |

3) Write down the rules for pumping Lemma for regular Languages.

Rules for pumping lemma for regular Languages:
Generating small strings, $z=$ uvw

* Length of uv, $|u v| \leqslant n$
* length of $v,|v| \geq 1$
* Length of ur $\omega \in L$, for all. $P=0,1, \ldots$.
where, $n=$ number of states in regular expression.

Define ambiguous grammar.
A Grammar is said to be ambiguous, If there exists two or more derivation tree for a string so (that means two or more left derivation trees).
Example: $G=\{\{5\},\{a+b,+, *\}, p, s\}$, where $p$ consists of $s \rightarrow s+s|s * s| a \mid b$

The string $a+a * b$ can be generated as

$$
\begin{array}{ll}
s \rightarrow s+s & s \rightarrow s+b \\
& \rightarrow a+s \\
& \rightarrow s+s * s * s \\
& \rightarrow a+a * s \\
& \rightarrow a+s * s \\
& \rightarrow a+a * b
\end{array} \quad \rightarrow a+a * s
$$

(5) What is meant by derivation?

Derivation tree or parse tree is a graphical representation for the derivation of the system production rules for a given of $G$.
Types of derivation:

* Left most derivation
* Right most derivation.

PART-B

1) prove the equivalent of NFA and DFA using subset construction.
Equivalent of NFA and DFA using subset construction:

passible subset $\Rightarrow 2^{3}=8$
step -1: $\operatorname{sub}=\left\{\phi,\left\{q_{0}\right\},\left\{q_{1}\right\},\left\{q_{2}\right\},\left\{q_{0}, q_{1}\right\},\left\{q_{0}, q_{2}\right\}\right.$, $\left\{q_{1}, q_{2}\right\},\left\{q_{0}, q_{1}, q_{2}\right\}$
Step-2:
Transition table:

E


|  |  | $a$ |
| :---: | :---: | :---: |
| $A$ | $A$ | $A$ |
| $\rightarrow B$ | $E$ | $B$ |
| $C$ | $A$ | $D$ |
| $D^{*}$ | $A$ | $A$ |
| $E$ | $E$ | $F$ |
| $F^{*}$ | $E$ | $B$ |
| $G^{*}$ | $A$ | $D$ |
| $H^{*}$ | $E$ | $F$ |

Step -3:
To eliminate the unwanted state Transition table:

DEA:

2) Explain in detail about Finite Automat with $\varepsilon$ moves with an example.
Finite Automaton with $\varepsilon$ moves: Definition:

The $\varepsilon$ transitions in NFA are given en order Lo move from one state the another without having any symbol from input set $\Sigma$ (co23) Example:


NFA with $\varepsilon$ can be represented by the same 5 tuple of finite automat

$$
M=(Q, \Sigma, s, q 0, F)
$$

Where transition function as $Q^{*}\left(\sum \cup \varepsilon\right\}$ to $2^{Q}$
The string ' $W$ ' in $L$ is accepted by NFA can be represented as

$$
L(M)=\left\{W \mid W \varepsilon^{*} \text { and } \delta\right. \text { transition for }
$$ $w$ from 90 to F$\}$

problem:
construct NFA with $\varepsilon$ which accepts a Language consisting the strings of any no. of. a's followed by any no. of. 's followed by no. of. c's

(3) a) construct a E-NFA for the regular expressior $10+(0+11) 0^{* 1}$.
E-NFA for regular expression:
Given: $10+(0+11) 0^{*} 1$.
step-1:


Step-2:


Step-3:


Step-4:


Step -5:

b) If $G$ is the grammar $s \rightarrow$ sbs/a show that $G$ is ambiguous.
parse trees using the given grammar to drive the string 'ababa'.
parse tree-1:

parse tree -2:

$\therefore$ Hence the given grammar is ambiguous.


DEPARTMENT OF COMPUTER SCIENCE \& ENGINEERING
ACADEMIC YEAR 2021-2022 (ODD SEMESTER)
CS8501 / Theory of Computation
YEAR / SEM: III/V
Total No of Students: 49
PCE SUMMARY REPORT

| S.NO | ACTIVITY | WEIGHTAGE | NO OF STUDENTS <br> PARTICIPATED |
| :---: | :--- | :---: | :---: |
| 1. | GATE Question Paper Solving | 10 | 49 |
| 2. | Problem Solving | 10 | 49 |
| 3. | Quiz | 10 | 49 |
| 4. | NPTEL Swayam Assignment <br> Questions | 10 | 49 |
| 5. | Mind Map | 10 | 46 |
| 6. | Simulation | 10 | 3 |

$\int_{H 0 D / C s E} \cos$


DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
ACADEMIC YEAR 2021-2022 / ODD SEMESTER Year/Sem : III / V CS8501-Theory of Computation

PCE ACTIVITY REPORT

| S.N | REGISTER NO | NAME | $\begin{aligned} & \text { GATE } \\ & \text { QP } \end{aligned}$ | Problem Solving | Quiz | NPTEL <br> SWAYAM <br> Assignment | Mind Map | Simulation | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 10 | 10 | 10 | 10 | 10 | 10 | 50 |
| 1. | 82111910400 | Aarthi. R | 10 | 10 | 10 | 10 | 10 |  | 50 |
| 2. | 82111910400 | Aiyappan. S | 10 | 10 | 10 | 10 | 10 |  | 50 |
| $\bigcirc$. | 82111910400 | Ajay Prasanna. G | 10 | 10 | 10 | 10 | 10 |  | 50 |
| 4. | 82111910400 | Akash.K | 10 | 10 | 10 | 10 | 10 |  | 50 |
| 5. | 82111910400 | Akshayalakshmi | 10 | 10 | 10 | 10 | 10 |  | 50 |
| 6. | 82111910400 | Aravind. A | 10 | 10 | 10 | 10 | 10 |  | 50 |
| 7. | 82111910400 | Avudaiappan .A | 10 | 10 | 10 | 10 | 10 |  | 50 |
| 8. | 82111910400 | Bakiya Lakshmi | 10 | 10 | 10 | 10 | 10 |  | 50 |
| 9. | 82111910401 | Balakrishnan. M | 10 | 10 | 10 | 10 | 10 |  | 50 |
| 10. | 82111910401 | Bavya. S | 10 | 10 | 10 | 10 | 10 |  | 50 |
| 11. | 82111910401 | Bhavatharani.T | 10 | 10 | 10 | 10 | 10 |  | 50 |
| 12. | 82111910401 | Deepika. P | 10 | 10 | 10 | 10 | 10 |  | 50 |
| 13. | 82111910401 | Devipriya. S | 10 | 10 | 10 | 10 | 10 |  | 50 |
| 14. | 82111910401 | Dharani. G | 10 | 10 | 10 | 10 | 10 |  | 50 |
| 15. | 82111910401 | Divakaran. J | 10 | 10 | 10 | 10 | 10 |  | 50 |
| 16. | 82111910401 | Elayadharshini | 10 | 10 | 10 | 10 | 10 |  | 50 |
| 17. | 82111910401 | Fasila Afreen.J | 10 | 10 | 10 | 10 |  | 10 | 50 |
| 18. | 82111910401 | Gokul.M | 10 | 10 | 10 | 10 | 10 |  | 50 |
| 19. | 82111910402 | Gomathi .A | 10 | 10 | 10 | 10 |  | 10 | 50 |
| 20. | 82111910402 | Gopinath. P | 10 | 10 | 10 | 10 | 10 |  | 50 |
| 21. | 82111910402 | Govindharajan. | 10 | 10 | 10 | 10 | 10 |  | 50 |
| 22. | 82111910402 | Kamali. K | 10 | 10 | 10 | 10 | 10 |  | 50 |
| 23. | 82111910402 | Kanishkar.K | 10 | 10 | 10 | 10 | 10 |  | 50 |
| 24. | 82111910402 | Karkuzhali. N | 10 | 10 | 10 | 10 | 10 |  | 50 |
| 25. | 82111910402 | Karthika. R | 10 | 10 | 10 | 10 | 10 | UH. | 50 |


| $\begin{gathered} \text { S.N } \\ 0 \end{gathered}$ | REGISTER NO | NAME | $\begin{gathered} \text { GATE } \\ \text { QP } \end{gathered}$ | Problem Solving | Quiz | NPTEL SWAYAM Assignment | Mind <br> Map | Simulation | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 10 | 10 | 10 | 10 | 50 |
|  |  |  |  |  |  |  |  |  | 50 |
| 26. | 821119104027 | Mohamed Yasir. | 10 | 10 | 10 | 10 | 10 |  | 50 |
|  | 821119104028 | Muralidharan. N | 10 | 10 | 10 | 10 | 10 |  | 50 |
| 27. |  |  | 10 | 10 | 10 | 10 | 10 |  | 50 |
| 28. | 821119104029 | Nandhini. J | 10 |  | 10 | 10 | 10 |  |  |
| 29. | 821119104031 | Pavitha. P | 10 |  | 10 | 10 | 10 |  | 50 |
| 30.8 | 821119104032 | Priyadharshini | 10 | 10 | 10 | 10 | 10 |  | 50 |
| 31. | 82111910403 | Ramakrishnan | 10 | 10 | 10 | 10 | 10 |  | 50 |
| 32. | 821119104034 | Rethinapriya. T | 10 | 10 | 10 | 10 | 10 |  | 50 |
| 33. | 82111910403 | Sachin.R | 10 | 10 | 10 | 10 | 10 |  | 50 |
| 34. | 821119104037 | Sathish.T | 10 | 10 | 10 | 10 | 10 |  | 50 |
| 35. | 821119104038 | Selvabharathi. S | 10 | 10 | 10 | 10 | 10 |  | 50 |
| 36. | 821119104039 | Shakthivel.M | 10 | 10 | 10 | 10 | 10 |  | 50 |
| 37. | 821119104040 | Siva.G | 10 | 10 | 10 | 10 | 10 |  | 50 |
| 38. | 821119104041 | Sivaranjani.S | 10 | 10 | 10 | 10 | 10 |  | 50 |
| 39. | 821119104043 | Suguna. S | 10 | 10 | 10 | 10 | 10 |  | 50 |
|  |  | Suresh Karthik J | 10 | 10 | 10 | 10 | 10 |  | 50 |
| 40. | 821119104044 |  | 10 | 10 | 10 | 10 |  | 10 | 50 |
| 41. | 821119104045 | Suruthi. S | 10 | 10 | 10 | 10 | 10 |  | 50 |
| 42. | 821119104046 | Surya. A | 10 | 10 | 10 | 10 | 10 |  | 50 |
| 43. | 821119104047 | Swetha. S | 10 | 10 |  | 10 | 10 |  | 50 |
| 44. | 821119104048 | Tharanika. K | 10 | 10 | 10 | 10 | 10 |  | 50 |
| 45. | 821119104049 | Varun. K | 10 | 10 | 10 | 10 |  |  | 50 |
| 46. | 821119104050 | Vengatramanan. | 2. 10 | 10 | 10 | 10 | 10 |  | 50 |
| 47. | . 821119104051 | Vignesh. K | 10 | 10 | 10 | 10 | 10 |  |  |
|  |  |  | 10 | 10 | 10 | 10 | 10 |  | 50 |
| 48. | . 821119104052 | Vikiramadhitha |  |  | 10 | 10 | 10 |  | 50 |
| 49. | 9. 821119104053 | Viswa .A | - 10 |  |  |  |  |  |  |

$\frac{8}{\mathrm{HOD} / \mathrm{CSE}}$
Staff Incharge

MIND MAPPING

$L_{1}=\left\{a^{n} b^{n}, n>0\right\}$. corresponding grammar $G_{1}$ will have $p: s_{1} \rightarrow a A b \mid a b$
$L_{2}=\left\{c^{m} d m, m \geq 0\right\}$. corresponding grammar $\mathrm{G}_{2}$ will have $P: S_{2} \rightarrow C B$ bl

$$
L E L_{1} U L_{2}=\left\{a^{n} b^{n}\right\} \cup\left\{c^{m} d^{m}\right\}
$$

union of the Languages $L_{1}$ and $L_{2} 1^{\prime}$

$$
L=L_{1} L_{2}=\left\{a^{n} b^{n} c^{m} d^{m}\right\}
$$

The cores ponding grammar or will have the additional production $s_{1} \rightarrow s_{1} s_{2}$ $L=\left\{a^{n} b^{n}, n \geq 0\right\}$. corresponding grammar $G$ will have $p: s \rightarrow a 46 \mid \varepsilon$

$$
4=\left\{a^{n} b^{n} 3^{*}\right.
$$

## Course File

## Format B

## CONTENT BEYOND THE SYLLABUS

TITLE
OBJECTIVE
METHODOLOGY
COVERAGE
: Tractable and Intractable Problem
: Understand the applications of NP problems
: Powerpoint Presentation

- Classification of algorithm based on complexity
- Example of tractable and intractable problem

OUTCOME
: The students able to,

- Classify the algorithms
- Determine which applications are tractable.

EVALUATION
: Test on the above concept included in model exam
DATE OF COMPLETION : 19.11.21

## Tractable and Intractable Problem

## Introduction

- Let's start by reminding ourselves of some common functions, ordered by how fast they grow.
- constant O(1)
- logarithmic $O(\log n)$
- linear $O(n) n-\log -n O(n \times \log n)$
- quadratic O(n 2 )
- cubic O(n 3 )
- exponential $O(k n)$,
- e.g. $O(2 n)$ factorial $O(n!)$
- super-exponential e.g. O(n n)


## Types of Function

- Polynomial functions: Any function that is $\mathrm{O}(\mathrm{n}$ k ), i.e. bounded from above by nk for some constant k.
- E.g. O(1), O(log n), O(n), O(n $\times \log n), O(n 2)$, O(n 3 )
- Exponential functions: The remaining functions. E.g. O(2n), O(n!), O(n n)


## Tractable \& Intractable Problem

- Tractable Problem: a problem that is solvable by a polynomial-time algorithm. The upper bound is polynomial.
- Intractable Problem: a problem that cannot be solved by a polynomial-time algorithm. The lower bound is exponential.


## Types of Algorithm

- Polynomial-Time Algorithm: an algorithm whose order-of-magnitude time performance is bounded from above by a polynomial function of $n$, where $n$ is the size of its inputs.
- Exponential Algorithm: an algorithm whose order-of-magnitude time performance is not bounded from above by a polynomial function of $n$.


## Polynomial Time

- Most of the algorithms we have looked at so far have been
- polynomial-time algorithms
-     - On inputs of size $n$, their worst-case running time is $O(n k)$ for some - constant $k$
-     - The question is asked can all problems be solved in polynomial time?
-     - From what we've covered to date the answer is obviously no. There
- are many examples of problems that cannot be solved by any computer
- no matter how much time is involved
-     - There are also problems that can be solved, but not in time O(nk) for
- any constant $k$


## NP Problems

- Another class of problems are called NP problems
-     - These are problems that we have yet to find efficient algorithms
in
- Polynomial Time for, but given a solution we can verify that solution
- in polynomial time
-     - Can these problems be solved in polynomial time?
-     - It has not been proved if these problems can be solved in polynomial
- time, or if they would require superpolynomial time
-     - This so-called P!= NP question is one which is widely researched and
- has yet to be settled


## Deterministic Vs Non Deterministic

## - Let us now define some terms

-     - P: The set of all problems that can be solved by deterministic
- algorithms in polynomial time
-     - By deterministic we mean that at any time during the operation of the
- algorithm, there is only one thing that it can do next
-     - A nondeterministic algorithm, when faced with a choice of several
- options, has the power to "guess" the right one.
-     - Using this idea we can define NP problems as,
-     - NP:The set of all problems that can be solved by nondeterministic
- algorithms in polynomial time.


## NP - Complete

- NP-complete problems are set of problems that have been proved to be
- in NP
-     - That is, a nondeterministic solution is quite trivial, and yet no
- polynomial time algorithm has yet been developed.
-     - This set of problems has an additional property which does seem to
- indicate that $\mathrm{P}=\mathrm{NP}$
-     - If any of the problems can be solved in polynomial time on a
- deterministic machine, then all the problems can be solved in NP(Cook's
- Theorem)
-     - It turns out that many interesting practical problems have this
- characteristic


## examples of tractable problems

- Searching an unordered list
- Searching an ordered list
- Sorting a list
- Multiplication of integers (even though there's a gap)
- Finding a minimum spanning tree in a graph (even though there's a gap)


## Examples of Intractable problem

- Some of them require a non-polynomial amount of output, so they clearly will take a non-polynomial amount of time,
- e.g.: * Towers of Hanoi: we can prove that any algorithm that solves this problem must have a worst-case running time that is at least $2 n-1$.
-     * List all permutations (all possible orderings) of $n$ numbers. - Others have polynomial amounts of output, but still cannot be solved in polynomial time:
-     * For an $\mathrm{n} \times \mathrm{n}$ draughts board with an arrangement of pieces, determine whether there is a winning strategy for White (i.e. a sequence of moves so that, no matter what Black does, White is guaranteed to win).

TSP Example

-

d. Tour by preorder
e. Optimum Tour

DEPARTMENT OF COMPUTER SCIENCE \& ENGINEERING
ACADEMIC YEAR 2021-2022 ODD SEMESTER
SUB CODE/SUBJECT: CS8501 / THEORY OF COMPUTATION BATCH:2019-2023

ADVANCED LEARNER LIST

| S.No | Register <br> Number | Student Name |
| :--- | :--- | :--- |
| 1. | 821119104008 | Avudaiappan . A B |
| 2. | 821119104012 | Bhavatharani.T |
| 3. | 821119104013 | Deepika. P |
| 4. | 821119104014 | Devipriya. S |
| 5. | 821119104018 | Fasila Afreen .J |
| 6. | 821119104023 | Kamali. K |
| 7. | 821119104029 | Nandhini. J |
| 8. | 821119104045 | Suruthi. S |
| 9. | 821119104047 | Swetha. S |
| 10. | 821119104049 | Varun. K |
| 11. | 821119104052 | Vikiramadhithan.M |

SLOW LEARNERS LIST

| S.No | Register Number | Student Name |
| :---: | ---: | :--- |
| 1. | 821119104005 | Akash. K |
| 2. | 821119104007 | Aravind. A |
| 3. | 821119104021 | Gopinath. P |
| 4. | 821119104027 | Mohamed Yasir. A |
| 5. | 821119104035 | Sachin .R |
| 6. | 821119104050 | Vengatramanan. S |
| 7. | 821119104053 | Viswa .A |




## DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING <br> ACADEMIC YEAR 2021-2022 (ODD SEMESTER) REVISION CLASS TIME TABLE (With effect from 15.11.21)

YEAR/SEM:III / V
VENUE: Room No: 224
FN: 9.30 AM to 12.30 PM
AN: 1.15 PM to 4.00 PM

| S.NO | DA |  | AN: 1.15 PM to 4.00 PM |
| :---: | :---: | :---: | :---: |
|  |  | SUBJECT CODE \& N 4 ME (FN) | SUBJECT CODE \& NAME (AN) |
| 1. | $\begin{gathered} 15.11 .21 \\ \text { (Monday) } \end{gathered}$ | ${ }^{1}$ CS8592-Object Oriented Analysis and Design <br> Dr.S.M.Uma | ${ }^{1}$ OMF551 - Product Design and Developthent Mr.R.Sriramkumar |
| 2. | $\begin{gathered} 16.11 .21 \\ \text { (Tuestay) } \end{gathered}$ | ${ }^{1}$ CS8591 - Computer Networks Dr.D.Sivakumar | ${ }^{1}$ CS8501 - Theory of Computation Ms.S.Puvaneswari |
| 3. | $\begin{gathered} 17.11 .21 \\ \text { (Wednesday) } \end{gathered}$ | ${ }^{\text {² }}$ MA8551- Algebra and Number Theory Dr.G.Jeyakrishnan | ${ }^{1}$ 1:C8691 - Microprocessor and Microcontroller Mr.R.Thandayuthapani |
| 4. | $\begin{gathered} 18.11 .21 \\ \text { (Thursday) } \end{gathered}$ | ${ }^{2}$ CS8592- Object Oriented Analysis and Design <br> Dr.S.M.Uma | ${ }^{2}$ OMF551 - Product Design and Develas men: Mr.R.Sriramkumar |
| 5. | $\begin{aligned} & 19.11 .21 \\ & \text { (Friday) } \end{aligned}$ | ${ }^{2}$ CS8501 - Theory of Computation Ms.S.Puvaneswari | ${ }^{2}$ CS85591 - Computer Networks Dr.D.Sivakumar |
| 6. | $\begin{gathered} 20.11 .21 \\ \text { (Saturday) } \end{gathered}$ | ${ }^{2}$ EC8691 - Microprocessor and Microcontroller <br> Mr.R.Thandayuthapani | ${ }^{2}$ MA8551- Algebra and Number Theor: Dr.G.Jeyakrishnan |

## REVISION

| 7. | $\begin{gathered} 22.11 .21 \\ \text { (Monday) } \end{gathered}$ | MA8551-Algebra and Number Theory Dr.G.Jeyakrishnan (MODEI, EXAM) | ${ }^{3}$ CS8591 - Computer Networks Dr.D.Sivakumar |
| :---: | :---: | :---: | :---: |
| 8. | $\begin{gathered} 23.11 .21 \\ \text { (Tuesday) } \end{gathered}$ | CS8591 - Computer Networks Dr.D.Sivakumar(MODEL EXAM) | ${ }^{3}$ I:C8691 - Microprocessor and Microcontroller <br> Mr.R.Thandayuthapani |
| 9. | $\begin{gathered} 24.11 .21 \\ \text { (Wednestay) } \end{gathered}$ | EC8691-Microprocessor and Microcontroller <br> Mr.R.Thandayuthapani(MODEL EXAM) | ${ }^{3}$ CS8501 - Theory of Computation Ms.S.Puvaneswari |
| 10. | $\begin{gathered} 25.11 .21 \\ \text { (Thursday) } \end{gathered}$ | CS8501 - Theory of Computation Ms.S.Puvaneswari(MODEL EXAM) | ${ }^{3}$ CS8592-Object Oriented Analysis anc Design Dr.S.M.Uma |
| 11. | $\begin{aligned} & 26.11 .21 \\ & \text { (Friday) } \end{aligned}$ | CS8592-Object Oriented Analysis and Design <br> Dr.S.M.Uma(MODEI, EXAM) | ${ }^{3}$ OMF551 - Product Design and Devel ranent Mr.R.Sriramkumar |
| 12. | $\begin{gathered} 27.11 .21 \\ \text { (Saturday) } \end{gathered}$ | OMF551 - Product Design and Development Mr.R.Sriramkumar (MODEL EXAM) | ${ }^{3}$ M 18551 - Algebra and Number Theo Dr.G.Jeyakrishnan |




## DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING ACADEMIC YEAR 2021-2022 / ODD SEMESTER

Year/Sem: III / V
Sub Code/ Subject: CS8501 / Theory of Computation
Revision Class Mark Statement

| S.No | Reg.No | Student Name |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. | 821119104001 | Aarthi R | $\begin{aligned} & 16,11 \cdot 21 \\ & (25) \end{aligned}$ | $\begin{gathered} 19 \cdot 11 \cdot 21 \\ \left.(2 \mathrm{~b})^{2}\right) \end{gathered}$ | $\underset{(25)}{24 \cdot 11 \cdot 21}$ | $\begin{gathered} 25.15 \cdot 21 \\ (25)^{2} \end{gathered}$ |  |
| 2. | 821119104002 | Aarthi. R | 24 | 20 | 21 | 20 |  |
|  | 821119104002 | Aiyappan. S | 22 | 20 | 20 | 21 |  |
| 3. | 821119104003 | Ajay Prasanna. G | 25 | 19 | 18 |  |  |
| 4. | 821119104005 | Akash . K | 20 |  |  |  |  |
| 5. | 821119104006 | Akshayalakshmi. | 20 | 18 | 18 | $A B$ |  |
| 6. | 821119104007 | Aravind. A | 23 | 21 | 22 | 2) |  |
| 7. | 821119104008 | Avudaiappan.A | 22. | 18 | 19 | $A B$ |  |
| 8. | 821119104009 | Bakiya Lakshmi | 23 | 25 | 23 | 22 |  |
| 9. | 821119104010 | Balakrishnan. M | 25 | 26 | 25 | 22 |  |
| 10. | 821119104011 | Bavya. S | 18 | 18 | $A B$ | 23 |  |
| 11. | 821119104012 | Bhạvatharani.T | 19 | 17 | $A B$ | 20 |  |
| 12. | 821119104013 | Bhạvatharani T | 25 | 26 | 25 | 24. |  |
| 14. | 821119104014 | Devipriya. S | 25 | 26 | 25 | 24 |  |
| 14. | 821119104015 | Dharani. G | 23 | 23 |  |  |  |
| 15. | 821119104016 | Divakaran. J | 20 |  |  | 23 |  |
| 16. | 821119104017 | Elayadharshini | D0 | 20 | 21 | 20 |  |
| 17. | 821119104018 | Fasila Afreen.] | 20 | 21 | 20 | 21 |  |
| 18. | 821119104019 | Gokul.M | 24 | 25 | 24 | 24 |  |
| 19. | 821119104020 | Gomathi . A | 20 | 20 | 21 | 20 |  |
| 20. |  | $\xrightarrow[\text { Gomathi . } A]{\text { Gopinath. P }}$ | 20 | $A B$ | 20 | 21 |  |
|  | 821119104021 | Gopinath. P | 20 | 20 | 21 | 20 |  |
| 21. | 821119104022 | Govindharajan. | 20 | 22 | 22. | $A B$ |  |
| 22. | 821119104023 | Kamali. K | 23 | 23 | 24 | 20 |  |
| 23. | 821119104024 | Kanishkar.K | 20 |  | 23 | $A B$ |  |
| 24. | 821119104025 | Karkuzhali. N | 21 |  |  |  |  |
| 25. | 821119104026 | Karthika. R | 22 | 24 | 24 | $-22$ |  |


| S.No | Reg.No | Student Name | (16.11.2) | 19.11.21 | 24.1121 | 25.1).2) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 26. | 821119104027 | Mohamed Yasir. | 23 | $A B$ | 18 | 20 |  |
| 27. | 821119104028 | Muralidharan. N | 24 | 20 | 23 | 22 |  |
| 28. | 821119104029 | Nandhini. J | 21 | 23 | 24 | 24 |  |
| 29. | 821119104031 | Pavitha.P | 20 | 20 | 21 | 20 |  |
| 30. | 821119104032 | Priyadharshini | 21 | 21 | 26 | 2 |  |
| 31. | 821119104033 | Ramakrishnan .E | 18 | 20 | $A B$ | 20 |  |
| 32. | 821119104034 | Rethinapriya. T | 20 | 21 | 22 | - 2 |  |
| 33. | 821119104035 | Sachin.R | 20 | 19 | 21 | 22 |  |
| 34. | 821119104037 | Sathish.T | 21 | 19 | 21 | 22 |  |
| 35. | 821119104038 | Sclvabharathi. S | 23 | 24 | 23 | 24 |  |
| 36. | 821119104039 | Shakthivel.M | 22 | 4 | 23 | 23 |  |
| 37. | 821119104040 | Siva.G | 24 | 19 | 23 | 22 |  |
| 38. | 821119104041 | Sivaranjani.S | 21 | 23 | 22 | 24 |  |
| 39. | 821119104043 | Suguna. S | 25 | 25 | 24 | 25 |  |
| 40. | 821119104044 | Suresh Karthik.J | 19 | 18 | 20 | $A B$ |  |
| 41. | 821119104045 | Suruthi. S | 20 | 19 | 24 | 25 |  |
| 42. | 821119104046 | Surya. A | 21 | 19 | 23 | 24 |  |
| 43. | 821119104047 | Swetha. S |  | 23 |  |  |  |
| 44. | 821119104048 | Tharanika. K | 23 | 24 | 22 |  |  |
| 45. | 821119104049 | Varun. K | 23 | 22 | $A B$ | 20 |  |
| 46. | 821119104050 | Vengatramanan. | 24 | 25 | 23 | 22 |  |
| 47. | 821119104051 | Vignesh. K | 24 | 20 | 21 | 21 |  |
| 48. | 821119104052 | Vikiramadhithan | 25 | 25 | 24 | 23 |  |
| 49. | 821119104053 | Viswa . A | 20 | $A B$ | 20 | 20 |  |
| No of Students Present |  |  | 49 | 46 | 45 | 44 |  |
| No of Students Absent |  |  |  | $0^{3}$ | 4 |  |  |
| Staff Signature |  |  | Sefur | Shiun | 1, Ruw | B, Ru |  |
| HOD Sign |  |  | $5-$ | \% | - | 88 |  |


2. i) prove that is its complement one bot RE


Name: BAKIYALAKSHISI.A
Class : IIL CSE
Q Subject: Theory or computation

is recursive is it $\&$
.

Theorem
$\Rightarrow$ If the languago is recursive it its complement one both REE.
prov :-
$\Rightarrow$ Let $L$ and $L$ be two recursivdy envimerable Languages that are accepted by Turning machines $\mathrm{nB}_{1}$ and $\mathrm{nS}_{2}$.
$\Rightarrow$ If wet, is accepted by Turnery machine nisi cond ns: that halts with answer "YES":
$\therefore \quad \Rightarrow \quad W \in \vec{L} \quad\left[w \notin L J\right.$ they are accepted by $\mathrm{ns}_{2}$ and $\mathrm{m}_{2}$ that hauls with unswen "YES".
$\Rightarrow \mathrm{ns}_{3}$ is emulates $\mathrm{M}_{1}$ did $\mathrm{Me}_{\mathrm{m}}$ are simultaneously given as.

$\Rightarrow$ From the abov clesign. If $W \in L$, If $W \in L$ is accepted by $w$ and halts "yes:
$\Rightarrow$ If $\omega \in L^{\prime}$ is $w[\omega \in L]$ they are accepted by $w$ and halts with "yes".
$\Rightarrow M_{1}$ and $\mathrm{nO}_{2}$ are accepted complements to. each other. $\Rightarrow$ Hence ns 3 is
$\Rightarrow$ Thus the languages and ins complements ane recursive enumerable languages, then they are recursive.
2. (ii) is $L$ is resursive then $L$ is also recursive.

Theorem :
If comp $\ddot{z}$ is a recursive then the complemers $\therefore$ are also recursive.
prosy :-
$\Rightarrow$ Let be a recursive languge Turning machine $m$, $\Rightarrow$ Let $I$ be a recursive language queening machine Ms. The construction of $M_{1}$ and $m_{2}$ are given as.


If $W \in L$, then they accepts nos, and hauls with "YES".
$\Rightarrow$ If $W \in I$, then they accepts mi and halts with "No".
$\Rightarrow \mathrm{H}_{2}$ is adivated once halts nos.
$\Rightarrow$ If $m_{1}$ returns "YES", then M2 Fats with "no".
$\Rightarrow$ IV $M_{1}$ returns "no", then "ms halts with "YES".
$=$ Thus tor an $w$, if $w \in L, w \in I$ they are accepus - $>_{2}$ and hats with either "YEs" aver "no".
$\Rightarrow$ Thus the $L$ is recursive then its complement is also recursive.
-.ii) Theorem:-
$\Rightarrow$ The unwon of two recursive enumerable Language is also recursive enumerable.
provo :-
$\Rightarrow$ Let $L$ and $L e$ be a recursive enumerable Languge halls uita Turning machine ms and $m_{2}$ :
$\Rightarrow$ If $W \in L$, then $N_{1}$ returns "YES", Else loop forever. If WERe then $\mathrm{n}_{2}$ retworng QOS", Else loop forever.
$\Rightarrow$ The ns 3 is performed on 4 and $L 2$ they are given as,

$\Rightarrow$ Here the output of Mi and mz are writer us the input tapes of $n$ nos.
$\Rightarrow$ Turning machine M3 is relwoms "BES" If atteast one outputs $M_{1}$ and $\mathrm{m}_{2}$ is Y̌ES.
$\Rightarrow$ The $n_{3}$ is haws with answer, if $w \in L_{1}, w \in L_{2}$ accepted hats with "YES", Else nos loop yo never that mi and pos 2 Lop is yorver.
$\Rightarrow$ Thus the anion of two recursive lconguages are recursive then is complement also recursive.
1.i) The is recursively enumerable $\therefore$
proof :-
The construction is based on. universal turning nsacheone.


These theorem proved yollous as,
$\Rightarrow$ 1) At turning mechine code ni is given input to the $\pi n s$.
$\Rightarrow$ ii) $M$ guessed in wi is right way that Mi accepts wi.
$\Rightarrow$ iii) $M$ is simulated to the universal machine cole u. Where teaks.
mi accepts wi.
$\Rightarrow$ i) If mi accepts wi then is accepts $w$.
$\Rightarrow$ Thus $\mathrm{wi}_{\mathrm{i}}$ accepts any strings $w_{i}$ then is guessedsed right way the to the ms .
$\left[\right.$ If $L\left(m_{i}\right)=\phi$ then no guessessed macle to the
(Turning machine.
$\Rightarrow 20 \mathrm{~m}$ does not accept $w$.



| TEST REPORT - ODD SEMSTER / 2021-2022 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Department |  |  |  | CSE |  |  |  |  |  | Year/Section |  |  |  |  |
| Name of th | c subject | \& Code |  | CS8501- TMEORY OF Computation |  |  |  |  |  | Name of the stafl |  | S. Punaneswari |  |  |
| Test Date |  | No. of students |  |  |  |  |  |  |  | Reason for poor performance |  | Corrective action |  | Signature of staff | Signature of HOD |
|  |  | Total | Appeared | Absent | Passed | Pass \% | 60.80 | $81 \cdot 100$ |  |  |  |  |  |  |  |
| Assessment <br> Test - 1 | 21.9.23 | 49 | 49 | - | 49 | $100 \%$ | - | - | - |  | - |  |  |  |  |
| Assessment <br> Test - 2 | 23.10.21 | 49 | 30 | 19 | 8 | $2 b \cdot 6 \%$ | - | -O <br> S | Due to rain 19 sladents were unable to allend the Rxam Fouled stadents didn't altent all the Pant- $B$ quastions. |  | Retest will be londucted for absentess 2 fullives |  |  |  |  |
| Model Exam | 25.11-21 | 49 | 48 | 1 | 19 | 39.5\% | 11 | - ${ }^{\text {k }}$ |  | * Falled stadents didn't cover all the part-B and parr-C questoins. | * more Ruiscin clases wila be conduled. |  | $8 \cdot P_{26} \omega_{141} \delta 8_{2614}$ |  |  |
| Model Exam - <br> II | 27.12 .21 | 49 | 46 | 3 | 7 | $15.2 \%$ | - |  | * Thaydidn't linte well for model exam. <br> \$Litlle bit confusion is while stadying Theorm in $\nabla$ wit |  | $\$$ Advieed them to do mare prattice in soluing the problems. |  | $\mathrm{N} . \mathrm{Pum}_{30 \mid 1)^{22}}^{\mathrm{C}} \mathrm{~S}=1 \mathrm{o}^{12}$ |  |  |
| AU Exam | 7.2 .22 | 40 | 49 | - | 49 | $100 \%$ | - | $-$ |  |  | - |  |  | $\rho_{81}$ |  |
| $A \Rightarrow 20$ At $\Rightarrow 1 \quad B=2 \quad B+\Rightarrow 26$. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Note: - Report should be retained by HOD concerned

Reg. No. : $\square$

## Question Paper Code : 40395

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2021.

Fifth Semester
Computer Science and Engineering
CS 8501 - THEORY OF COMPUTATION
(Regulations 2017)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.

$$
\text { PART A }-(10 \times 2=20 \text { marks })
$$

1. Write regular expression to represent exponential constants of ' C ' language.
2. Define extended transition diagram.
3. Write regular expression to recognize the set of strings over $\{a, b\}$ having odd number of a's and b's and that starts with ' $a$ '.
4. When two states are said to be distinguished? Give example.
5. Write CFG to accept the language defined by, $L=\left\{a^{i} b^{j} c^{k} \mid i, j, k>=0\right.$ and $\left.i=j+k\right\}$.
6. List out the steps for performing LL parsing.
7. Draw pushdown automata to accept all palindromes of odd length.
8. Formally define the pushdown automata based on the types of acceptance.
9. Draw Turing machine to compute double the value of an integer.
10. State Post's correspondence problem.

$$
\text { PART B }-(5 \times 13=65 \text { marks })
$$

11. (a) Design an $\varepsilon-N F A$ (Nondeterministic finite automaton) to recognize the language $L$, containing only binary strings of non-zero length whose bits sum to a multiple of 3 . Convert $\varepsilon-N F A$ into an equivalent minimized deterministic finite automaton. Illustrate the computation of your model on any sample input.

Or
(b) (i) State and prove the theorem of mathematical induction.
(ii) In a programming language, all the following expressions represent Integer and floating point literals. Construct a finite automata that will accept all the different formats and convert the same to deterministic finite automata, if required.
12. (a) (i) Prove that regular expressions are closed under union, intersection and Kleene closure.
(ii) Identify a language L , such that $\mathrm{L}^{*}=\mathrm{L}+$.

Or
(b) Find a minimum State Deterministic Finite Automata recognizing the language corresponding to the regular expression $(0 * 10+1 * 0)(01)^{*}$.
13. (a) What language over $\{0,1\}$ does the CFG with productions
$S \rightarrow 00 S|11 S| S 00|S 11| 01 S 01|01 S 10| 10 S 10|10 S 01| \mathrm{E}$ generate? Justify your answer.

## Or

(b) Design an pushdown automata to recognize the language, L defined by, L $L=\left\{w c w^{c} \mid w €\{0,1\}^{*}\right.$ and $w^{c}$ is the one's complement of $\left.w\right\}$.
14. (a) Convert the following grammar to Chomsky Normal form.
$S \rightarrow A|A B 0| A 1 A$
$A \rightarrow A 0 \mid \epsilon$
$B \rightarrow B 1 \mid B C$
$C \rightarrow C B|C A| 1 B$.

## Or

(b) Construct an appropriate model to recognize the language $L$ defined by, $L=\left\{a^{n} b^{m} c^{m} d^{n} \mid n, m>=0\right\}$.
15. (a) With proper examples, explain P and NP complete problems.

Or
(b) State and prove that "Diagnoalization language is not recursively enumerable".

## PART C $-(1 \times 15=15$ marks $)$

16. (a) Design appropriate automation model for the language defined by the grammar given below.

| $S \rightarrow a S B C$ | $S \rightarrow a B C$ |
| :--- | :--- |
| $C B \rightarrow B C$ | $a B \rightarrow a b$ |
| $b B \rightarrow b b$ | $b C \rightarrow b c$ |
| $c C \rightarrow c c$ |  |

Or
(b) Design appropriate automation model for the language defined by the grammar given below.

$$
\begin{aligned}
& S \rightarrow a b c \mid a A b c \\
& A b \rightarrow b A \\
& A c \rightarrow B b c c \\
& b B \rightarrow B b \\
& a B \rightarrow a a \mid a a A .
\end{aligned}
$$

REVIEW SHEET


